scholarly journals THE POTENTIAL OF LOW-COST RPAS FOR MULTI-VIEW RECONSTRUCTION OF SUB-VERTICAL ROCK FACES

Author(s):  
K. Thoeni ◽  
D. E. Guccione ◽  
M. Santise ◽  
A. Giacomini ◽  
R. Roncella ◽  
...  

The current work investigates the potential of two low-cost off-the-shelf quadcopters for multi-view reconstruction of sub-vertical rock faces. The two platforms used are a DJI Phantom 1 equipped with a Gopro Hero 3+ Black and a DJI Phantom 3 Professional with integrated camera. The study area is a small sub-vertical rock face. Several flights were performed with both cameras set in time-lapse mode. Hence, images were taken automatically but the flights were performed manually as the investigated rock face is very irregular which required manual adjustment of the yaw and roll for optimal coverage. The digital images were processed with commercial SfM software packages. Several processing settings were investigated in order to find out the one providing the most accurate 3D reconstruction of the rock face. To this aim, all 3D models produced with both platforms are compared to a point cloud obtained with a terrestrial laser scanner. Firstly, the difference between the use of coded ground control targets and the use of natural features was studied. Coded targets generally provide the best accuracy, but they need to be placed on the surface, which is not always possible, as sub-vertical rock faces are not easily accessible. Nevertheless, natural features can provide a good alternative if wisely chosen as shown in this work. Secondly, the influence of using fixed interior orientation parameters or self-calibration was investigated. The results show that, in the case of the used sensors and camera networks, self-calibration provides better results. To support such empirical finding, a numerical investigation using a Monte Carlo simulation was performed.

Author(s):  
K. Thoeni ◽  
D. E. Guccione ◽  
M. Santise ◽  
A. Giacomini ◽  
R. Roncella ◽  
...  

The current work investigates the potential of two low-cost off-the-shelf quadcopters for multi-view reconstruction of sub-vertical rock faces. The two platforms used are a DJI Phantom 1 equipped with a Gopro Hero 3+ Black and a DJI Phantom 3 Professional with integrated camera. The study area is a small sub-vertical rock face. Several flights were performed with both cameras set in time-lapse mode. Hence, images were taken automatically but the flights were performed manually as the investigated rock face is very irregular which required manual adjustment of the yaw and roll for optimal coverage. The digital images were processed with commercial SfM software packages. Several processing settings were investigated in order to find out the one providing the most accurate 3D reconstruction of the rock face. To this aim, all 3D models produced with both platforms are compared to a point cloud obtained with a terrestrial laser scanner. Firstly, the difference between the use of coded ground control targets and the use of natural features was studied. Coded targets generally provide the best accuracy, but they need to be placed on the surface, which is not always possible, as sub-vertical rock faces are not easily accessible. Nevertheless, natural features can provide a good alternative if wisely chosen as shown in this work. Secondly, the influence of using fixed interior orientation parameters or self-calibration was investigated. The results show that, in the case of the used sensors and camera networks, self-calibration provides better results. To support such empirical finding, a numerical investigation using a Monte Carlo simulation was performed.


2020 ◽  
Vol 10 (1) ◽  
pp. 450-458
Author(s):  
Filip Pružinec ◽  
Peter Mego ◽  
Renata Đuračiová

AbstractThe use of LED lights in smart street lighting to save energy is efficient and very common in many developed cities. However, such a system results in higher initial costs, which may discourage smaller towns and villages from its purchasing. This paper therefore deals with the design and development of a smart street lighting control system for smaller cities and villages. Such a system is required to be economical from the perspective of development and production. Considering other requirements such as platform independence, high availability and broad support, we proposed to build a system as a web application using a custom light control service component. The result is a web application that consists of a user interface served by a web server and an application server used to communicate with light control service. In addition, the system is designed as a geographical information system to be easy to use for managing street lights in groups or individually, while displaying them on the map. The system allows automatic sensor-based light intensity modulation by default with the possibility of manual adjustment or override of the illumination. It also includes a device error notification system with a tool to navigate faulty devices. The presented system is a low-cost solution for intelligent street lighting control designed for smaller cities or villages. They can apply the designed architecture of the system and the specific technologies suitable because of their low-cost implementation.


2021 ◽  
Vol 11 (12) ◽  
pp. 5321
Author(s):  
Marcin Barszcz ◽  
Jerzy Montusiewicz ◽  
Magdalena Paśnikowska-Łukaszuk ◽  
Anna Sałamacha

In the era of the global pandemic caused by the COVID-19 virus, 3D digitisation of selected museum artefacts is becoming more and more frequent practice, but the vast majority is performed by specialised teams. The paper presents the results of comparative studies of 3D digital models of the same museum artefacts from the Silk Road area generated by two completely different technologies: Structure from Motion (SfM)—a method belonging to the so-called low-cost technologies—and by Structured-light 3D Scanning (3D SLS). Moreover, procedural differences in data acquisition and their processing to generate three-dimensional models are presented. Models built using a point cloud were created from data collected in the Afrasiyab museum in Samarkand (Uzbekistan) during “The 1st Scientific Expedition of the Lublin University of Technology to Central Asia” in 2017. Photos for creating 3D models in SfM technology were taken during a virtual expedition carried out under the “3D Digital Silk Road” program in 2021. The obtained results show that the quality of the 3D models generated with SfM differs from the models from the technology (3D SLS), but they may be placed in the galleries of the vitrual museum. The obtained models from SfM do not have information about their size, which means that they are not fully suitable for archiving purposes of cultural heritage, unlike the models from SLS.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Han Wang ◽  
Gloria M. Conover ◽  
Song-I Han ◽  
James C. Sacchettini ◽  
Arum Han

AbstractAnalysis of growth and death kinetics at single-cell resolution is a key step in understanding the complexity of the nonreplicating growth phenotype of the bacterial pathogen Mycobacterium tuberculosis. Here, we developed a single-cell-resolution microfluidic mycobacterial culture device that allows time-lapse microscopy-based long-term phenotypic visualization of the live replication dynamics of mycobacteria. This technology was successfully applied to monitor the real-time growth dynamics of the fast-growing model strain Mycobacterium smegmatis (M. smegmatis) while subjected to drug treatment regimens during continuous culture for 48 h inside the microfluidic device. A clear morphological change leading to significant swelling at the poles of the bacterial membrane was observed during drug treatment. In addition, a small subpopulation of cells surviving treatment by frontline antibiotics was observed to recover and achieve robust replicative growth once regular culture media was provided, suggesting the possibility of identifying and isolating nonreplicative mycobacteria. This device is a simple, easy-to-use, and low-cost solution for studying the single-cell phenotype and growth dynamics of mycobacteria, especially during drug treatment.


2021 ◽  
Vol 13 (4) ◽  
pp. 829
Author(s):  
Teresa Gracchi ◽  
Guglielmo Rossi ◽  
Carlo Tacconi Stefanelli ◽  
Luca Tanteri ◽  
Rolando Pozzani ◽  
...  

Unmanned aerial vehicle (UAV) photogrammetry has recently become a widespread technique to investigate and monitor the evolution of different types of natural processes. Fluvial geomorphology is one of such fields of application where UAV potentially assumes a key role, since it allows for overcoming the intrinsic limits of satellite and airborne-based optical imagery on one side, and in situ traditional investigations on the other. The main purpose of this paper was to obtain extensive products (digital terrain models (DTMs), orthophotos, and 3D models) in a short time, with low costs and at a high resolution, in order to verify the capability of this technique to analyze the active geomorphic processes on a 12 km long stretch of the French–Italian Roia River at both large and small scales. Two surveys, one year apart from each other, were carried out over the study area and a change detection analysis was performed on the basis of the comparison of the obtained DTMs to point out and characterize both the possible morphologic variations related to fluvial dynamics and modifications in vegetation coverage. The results highlight how the understanding of different fluvial processes may be improved by appropriately exploiting UAV-based products, which can thus represent a low-cost and non-invasive tool to crucially support decisionmakers involved in land management practices.


2017 ◽  
Author(s):  
◽  
Tuan Anh Trieu

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Different cell types of an organism have the same DNA sequence, but they can function differently because their difference in 3D organization allows them to express different genes and has different cellular functions. Understanding the 3D organization of the genome is the key to understand functions of the cell. Chromosome conformation capture techniques like Hi-C and TCC that can capture interactions between proximal chromosome fragments have allowed the study of 3D genome organization in high resolution and high through-put. My work focuses on developing computational methods to reconstruct 3D genome structures from Hi-C data. I presented three methods to reconstruct 3D genome and chromosome structures. The first method can build 3D genome models from soft constraints of contacts and non-contacts. This method utilizes the concept of contact and non-contact to reconstruct 3D models without translating interaction frequencies into physical distances. The translation is commonly used by other methods even though it makes a strong assumption about the relationship between interaction frequencies and physical distances. In synthetic dataset, when the relationship was known, my method performed comparably with other methods assuming the relationship. This shows the potential of my method for real Hi-C datasets where the relationship is unknown. The limitation of the method is that it has parameters requiring manual adjustment. I developed the second method to reconstruct 3D genome models. This method utilizes a commonly used function to translate interaction frequencies to physical distances to build 3D models. I proposed a novel way to derive soft constraints to handle inconsistency in the data and to make the method robust. Building 3D models at high resolution is a more challenging problem as the number of constraints is small and the feasible space is larger. I introduced a third method to build 3D chromosome models at high resolution. The method reconstructs models at low resolution and then uses them to guide the reconstruction of models at high resolution. The last part of my work is the development of a comprehensive tool with intuitive graphic user interface to analyze Hi-C data, reconstruct and analyze 3D models.


2021 ◽  
Author(s):  
Renato Somma ◽  
Alfredo Trocciola ◽  
Daniele Spizzichino ◽  
Alessandro Fedele ◽  
Gabriele Leoni ◽  
...  

<p>The archaeological site of Villa Arianna - located on Varano Hill, south of Vesuvius - offer tantalizing information regarding first-century AD resilience to hydrogeological risk. Additionally, the site provides an important test case for mitigation efforts of current and future geo-hazard. Villa Arianna, notable in particular for its wall frescoes, is part of a complex of Roman villas built between 89 BC and AD 79 in the ancient coastal resort area of Stabiae. This villa complex is located on a morphological terrace that separates the ruins from the present-day urban center of Castellammare di Stabia. The Varano hill is formed of alternating pyroclastic deposits, from the Vesuvius Complex, and alluvial sediments, from the Sarno River. The area, in AD 79, was completely covered by PDCs from the Plinian eruption of Vesuvius. Due to the geomorphological structure the slope is prone to slope instability phenomena that are mainly represented by earth and debris flows, usually triggered by heavy rainfall. The susceptibility is worsened by changes in hydraulic and land-use conditions mainly caused by lack of maintenance of mitigation works. Villa Arianna is the subject of a joint pilot project of the INGV-ENEA-ISPRA that includes non-invasive monitoring techniques such as the use of UAVs to study the areas of the slope at higher risk of instability. The project, in particular, seeks to implement innovative mitigation solutions that are non-destructive to the cultural heritage. UAVs represent the fastest way to produce high-resolution 3D models of large sites and allow archaeologists to collect accurate spatial data that can be used for 3D GIS analyses. Through this pilot project, we have used detailed 3D models and high-resolution ortho-images for new analyses and documentation of the site and to map the slope instabilities that threatens the Villa Arianna site. Through multi-temporal analyses of different data acquisitions, we intend to define the detailed morphological evolution of the entire Varano slope. These analyses will allow us to highlight priority areas for future low-impact mitigation interventions.</p>


Author(s):  
Abul Al Arabi ◽  
Rayhan Sardar Tipu ◽  
Mohammad Raihanul Bashar ◽  
Binoy Barman ◽  
Shama Ali Monicay ◽  
...  

Author(s):  
M. Abdelaziz ◽  
M. Elsayed

<p><strong>Abstract.</strong> Underwater photogrammetry in archaeology in Egypt is a completely new experience applied for the first time on the submerged archaeological site of the lighthouse of Alexandria situated on the eastern extremity of the ancient island of Pharos at the foot of Qaitbay Fort at a depth of 2 to 9 metres. In 2009/2010, the CEAlex launched a 3D photogrammetry data-gathering programme for the virtual reassembly of broken artefacts. In 2013 and the beginning of 2014, with the support of the Honor Frost Foundation, methods were developed and refined to acquire manual photographic data of the entire underwater site of Qaitbay using a DSLR camera, simple and low cost materials to obtain a digital surface model (DSM) of the submerged site of the lighthouse, and also to create 3D models of the objects themselves, such as statues, bases of statues and architectural elements. In this paper we present the methodology used for underwater data acquisition, data processing and modelling in order to generate a DSM of the submerged site of Alexandria’s ancient lighthouse. Until 2016, only about 7200&amp;thinsp;m<sup>2</sup> of the submerged site, which exceeds more than 13000&amp;thinsp;m<sup>2</sup>, was covered. One of our main objectives in this project is to georeference the site since this would allow for a very precise 3D model and for correcting the orientation of the site as regards the real-world space.</p>


2019 ◽  
Author(s):  
Andrea Palacios ◽  
Juan José Ledo ◽  
Niklas Linde ◽  
Linda Luquot ◽  
Fabian Bellmunt ◽  
...  

Abstract. Surface electrical resistivity tomography (ERT) is a widely used tool to study seawater intrusion (SWI). It is noninvasive and offers a high spatial coverage at a low cost, but it is strongly affected by decreasing resolution with depth. We conjecture that the use of CHERT (cross-hole ERT) can partly overcome these resolution limitations since the electrodes are placed at depth, which implies that the model resolution does not decrease in the zone of interest. The objective of this study is to evaluate the CHERT for imaging the SWI and monitoring its dynamics at the Argentona site, a well-instrumented field site of a coastal alluvial aquifer located 40 km NE of Barcelona. To do so, we installed permanent electrodes around boreholes attached to the PVC pipes to perform time-lapse monitoring of the SWI on a transect perpendicular to the coastline. After two years of monitoring, we observe variability of SWI at different time scales: (1) natural seasonal variations and aquifer salinization that we attribute to long-term drought and (2) short-term fluctuations due to sea storms or flooding in the nearby stream during heavy rain events. The spatial imaging of bulk electrical conductivity allows us to explain non-trivial salinity profiles in open boreholes (step-wise profiles really reflect the presence of fresh water at depth). By comparing CHERT results with traditional in situ measurements such as electrical conductivity of water samples and bulk electrical conductivity from induction logs, we conclude that CHERT is a reliable and cost-effective imaging tool for monitoring SWI dynamics.


Sign in / Sign up

Export Citation Format

Share Document