scholarly journals Pursuit of the ideal antiseptic irrigation solution in the management of periprosthetic joint infections

2021 ◽  
Vol 6 (6) ◽  
pp. 189-198
Author(s):  
Ahmed Siddiqi ◽  
Zuhdi E. Abdo ◽  
Bryan D. Springer ◽  
Antonia F. Chen

Abstract. Irrigation and debridement in the treatment of periprosthetic joint infection (PJI) serve an integral role in the eradication of bacterial burden and subsequent re-infection rates. Identifying the optimal irrigation agent, however, remains challenging, as there is limited data on superiority. Direct comparison of different irrigation solutions remains difficult because of variability in treatment protocols. While basic science studies assist in the selection of irrigation fluids, in vitro results do not directly translate into clinical significance once implemented in vivo. Dilute povidone iodine, hydrogen peroxide, chlorhexidine gluconate, acetic acid, sodium hypochlorite, hypochlorous acid, and preformed combination solutions all have potential against a broad spectrum of PJI pathogens with their own unique advantages and disadvantages. Future clinical studies are needed to identify ideal irrigation solutions with optimal bactericidal properties and low cytotoxicity for PJI treatment.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Elia R. Langenmair ◽  
Eva J. Kubosch ◽  
Gian M. Salzmann ◽  
Samuel Beck ◽  
Hagen Schmal

Objective. Osteoarthritis is a long-term complication of acute articular infections. However, the roles of cartilage and synovia in this process are not yet fully understood.Methods. Patients with acute joint infections were enrolled in a prospective clinical trial and the cytokine composition of effusions compared in patients with arthroplasty (n= 8) or with intact joints (n= 67). Cytokines and cell function were also analyzed using a humanin vitromodel of joint infection.Results. Synovial IL-1βlevels were significantly higher in patients with arthroplasty (p= 0.004). Higher IL-1βconcentrations were also found in thein vitromodel without chondrocytes (p< 0.05). The anti-inflammatory cytokines IL-4 and IL-10 were consistently expressedin vivoandin vitro, showing no association with the presence of cartilage or chondrocytes. In contrast, FasL levels increased steadilyin vitro, reaching higher levels without chondrocytes (p< 0.05). Likewise, the viability of synovial fibroblasts (SFB) during infection was higher in the presence of chondrocytes. The cartilage-metabolism markers aggrecan and bFGF were at higher concentrations in intact joints, but also synthesized by SFB.Conclusions. Our data suggest an anti-inflammatory effect of cartilage associated with the SFBs’ increased resistance to infections, which displayed the ability to effectively synthesize cartilage metabolites.The trial is registered with DRKS00003536, MISSinG.


2021 ◽  
Vol 103-B (2) ◽  
pp. 234-244
Author(s):  
Bryan P. Gibb ◽  
Michael Hadjiargyrou

Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics. Cite this article: Bone Joint J 2021;103-B(2):234–244.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 656
Author(s):  
Luis Buzón-Martín ◽  
I. Zollner-Schwetz ◽  
Selma Tobudic ◽  
Emilia Cercenado ◽  
Jaime Lora-Tamayo

Dalbavancin (DAL) is a lipoglycopeptide with bactericidal activity against a very wide range of Gram-positive microorganisms. It also has unique pharmacokinetic properties, namely a prolonged half-life (around 181 h), which allows a convenient weekly dosing regimen, and good diffusion in bone tissue. These features have led to off-label use of dalbavancin in the setting of bone and joint infection, including prosthetic joint infections (PJI). In this narrative review, we go over the pharmacokinetic and pharmacodynamic characteristics of DAL, along with published in vitro and in vivo experimental models evaluating its activity against biofilm-embedded bacteria. We also examine published experience of osteoarticular infection with special attention to DAL and PJI.


1972 ◽  
Vol 68 (2_Supplb) ◽  
pp. S285-S309 ◽  
Author(s):  
Kurt Ahrén ◽  
Per Olof Janson ◽  
Gunnar Selstam

ABSTRACT This paper discusses in vivo and in vitro ovarian perfusion systems described so far in the literature. The interest is not focussed primarily on the results of these studies but rather on the advantages and disadvantages of the techniques and methods used. Another part of the paper summarizes the points which are most important, in our opinion, to take into consideration when developing an in vitro perfusion technique of the ovary. The last part of the paper gives a description of and some preliminary results from an in vitro perfusion system of the rabbit ovary which is under development in this laboratory.


2021 ◽  
Vol 22 (13) ◽  
pp. 7130
Author(s):  
Jeffersson Krishan Trigo-Gutierrez ◽  
Yuliana Vega-Chacón ◽  
Amanda Brandão Soares ◽  
Ewerton Garcia de Oliveira Mima

Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability to absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT). However, CUR is hydrophobic, unstable in solutions, and has low bioavailability, which hinders its clinical use. To circumvent these drawbacks, drug delivery systems (DDSs) have been used. In this review, we summarize the DDSs used to carry CUR and their antimicrobial effect against viruses, bacteria, and fungi, including drug-resistant strains and emergent pathogens such as SARS-CoV-2. The reviewed DDSs include colloidal (micelles, liposomes, nanoemulsions, cyclodextrins, chitosan, and other polymeric nanoparticles), metallic, and mesoporous particles, as well as graphene, quantum dots, and hybrid nanosystems such as films and hydrogels. Free (non-encapsulated) CUR and CUR loaded in DDSs have a broad-spectrum antimicrobial action when used alone or as a PS in aPDT. They also show low cytotoxicity, in vivo biocompatibility, and improved wound healing. Although there are several in vitro and some in vivo investigations describing the nanotechnological aspects and the potential antimicrobial application of CUR-loaded DDSs, clinical trials are not reported and further studies should translate this evidence to the clinical scenarios of infections.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 914
Author(s):  
Melanie V. Brady ◽  
Flora M. Vaccarino

The complexities of human neurodevelopment have historically been challenging to decipher but continue to be of great interest in the contexts of healthy neurobiology and disease. The classic animal models and monolayer in vitro systems have limited the types of questions scientists can strive to answer in addition to the technical ability to answer them. However, the tridimensional human stem cell-derived organoid system provides the unique opportunity to model human development and mimic the diverse cellular composition of human organs. This strategy is adaptable and malleable, and these neural organoids possess the morphogenic sensitivity to be patterned in various ways to generate the different regions of the human brain. Furthermore, recapitulating human development provides a platform for disease modeling. One master regulator of human neurodevelopment in many regions of the human brain is sonic hedgehog (SHH), whose expression gradient and pathway activation are responsible for conferring ventral identity and shaping cellular phenotypes throughout the neural axis. This review first discusses the benefits, challenges, and limitations of using organoids for studying human neurodevelopment and disease, comparing advantages and disadvantages with other in vivo and in vitro model systems. Next, we explore the range of control that SHH exhibits on human neurodevelopment, and the application of SHH to various stem cell methodologies, including organoids, to expand our understanding of human development and disease. We outline how this strategy will eventually bring us much closer to uncovering the intricacies of human neurodevelopment and biology.


2021 ◽  
Vol 6 (2) ◽  
pp. 91
Author(s):  
Pier Francesco Indelli ◽  
Stefano Ghirardelli ◽  
Ferdinando Iannotti ◽  
Alessia Maria Indelli ◽  
Gennaro Pipino

Background: Periprosthetic joint infection (PJI) represents a devastating consequence of total joint arthroplasty (TJA) because of its high morbidity and its high impact on patient quality of life. The lack of standardized preventive and treatment strategies is a major challenge for arthroplasty surgeons. The purpose of this article was to explore the potential and future uses of nanotechnology as a tool for the prevention and treatment of PJI. Methods: Multiple review articles from the PubMed, Scopus and Google Scholar databases were reviewed in order to establish the current efficacy of nanotechnology in PJI preventive or therapeutic scenarios. Results: As a prevention tool, anti-biofilm implants equipped with nanoparticles (silver, silk fibroin, poly nanofibers, nanophase selenium) have shown promising antibacterial functionality. As a therapeutic tool, drug-loaded nanomolecules have been created and a wide variety of carrier materials (chitosan, titanium, calcium phosphate) have shown precise drug targeting and efficient control of drug release. Other nanotechnology-based antibiotic carriers (lipid nanoparticles, silica, clay nanotubes), when added to common bone cements, enhanced prolonged drug delivery, making this technology promising for the creation of antibiotic-added cement joint spacers. Conclusion: Although still in its infancy, nanotechnology has the potential to revolutionize prevention and treatment protocols of PJI. Nevertheless, extensive basic science and clinical research will be needed to investigate the potential toxicities of nanoparticles.


2020 ◽  
Vol 10 ◽  
Author(s):  
John Jairo Aguilera-Correa ◽  
Amaya Garcia-Casas ◽  
Aranzazu Mediero ◽  
David Romera ◽  
Francisca Mulero ◽  
...  

2010 ◽  
Vol 23 (1) ◽  
pp. 14-34 ◽  
Author(s):  
Graeme N. Forrest ◽  
Kimberly Tamura

SUMMARY The increasing emergence of antimicrobial-resistant organisms, especially methicillin-resistant Staphylococcus aureus (MRSA), has resulted in the increased use of rifampin combination therapy. The data supporting rifampin combination therapy in nonmycobacterial infections are limited by a lack of significantly controlled clinical studies. Therefore, its current use is based upon in vitro or in vivo data or retrospective case series, all with major limitations. A prominent observation from this review is that rifampin combination therapy appears to have improved treatment outcomes in cases in which there is a low organism burden, such as biofilm infections, but is less effective when effective surgery to obtain source control is not performed. The clinical data support rifampin combination therapy for the treatment of prosthetic joint infections due to methicillin-sensitive S. aureus (MSSA) after extensive debridement and for the treatment of prosthetic heart valve infections due to coagulase-negative staphylococci. Importantly, rifampin-vancomycin combination therapy has not shown any benefit over vancomycin monotherapy against MRSA infections either clinically or experimentally. Rifampin combination therapy with daptomycin, fusidic acid, and linezolid needs further exploration for these severe MRSA infections. Lastly, an assessment of the risk-benefits is needed before the addition of rifampin to other antimicrobials is considered to avoid drug interactions or other drug toxicities.


2021 ◽  
Vol 10 (3) ◽  
pp. 109-120
Author(s):  
A. I. Mosiagina ◽  
A. V. Morgun ◽  
A. B. Salmina

There is growing research focusing on endothelial cells as separate units of the blood-brain barrier (BBB), and on the complex relationships between different types of cells within a neurovascular unit. To conduct this type of studies, researches use vastly different in vitro BBB models. The main objective of such models is to study the BBB permeability for different molecules, and to advance the current level of understanding the mechanisms of disease and to develop methods of targeted therapy for the central nervous system. The analysis of the existing Abstract in vitro BBB models and their advantages/disadvantages was conducted using the clinical trial data obtained in Russian/foreign countries. In this review, the authors highlight the most relevant assessment parameters and propose a unified classification of in vitro BBB models. According to the performed analysis, there is a tendency to move from 2D BBB models based on semipermeable inserts to 3D BBB spheroid and microfluidic organ-on-chip models. Moreover, the use of human induced pluripotent stem cells instead of animal primary cells will make it possible to reliably scale the results obtained in vitro to conditions in vivo.


Sign in / Sign up

Export Citation Format

Share Document