scholarly journals Analysis of the ground vibration generated by debris flows and other torrential processes at the Rebaixader monitoring site (Central Pyrenees, Spain)

2014 ◽  
Vol 14 (4) ◽  
pp. 929-943 ◽  
Author(s):  
C. Abancó ◽  
M. Hürlimann ◽  
J. Moya

Abstract. Monitoring of debris flows using ground vibration sensors has increased in the last two decades. However, the correct interpretation of the signals still presents ambiguity. In the Rebaixader monitoring site (Central Pyrenees, Spain) two different ground vibration stations are installed. At the first station the ground velocity signal is transformed into an impulses-per-second signal (low frequency, 1 Hz). The analysis of the data recorded at this station show that the shape of the impulses signal is one of the key parameters to describe the evolution of the event. At the second station the ground velocity signal is directly recorded at high frequency (250 Hz). The results achieved at this station show that the differences in time series and spectral analysis are helpful to describe the temporal evolution of the events. In addition, some general outcomes were obtained: the attenuation of the signal with the distance has been identified as linear to exponential; and the assembly of the geophones to the terrain has an important effect on the amplification of the signal. All these results highlight that the definition of ground vibration thresholds for debris-flow detection or warning purposes is a difficult task; and that influence of site-specific conditions is notable.

2013 ◽  
Vol 1 (4) ◽  
pp. 4389-4423 ◽  
Author(s):  
C. Abancó ◽  
M. Hürlimann ◽  
J. Moya

Abstract. The use of ground vibration sensors for debris-flow monitoring has increased in the last two decades. However, the correct interpretation of the seismic signals produced by debris flows still presents many uncertainties. In the Rebaixader monitoring site (Central Pyrenees, Spain) two different ground vibration stations with different characteristics in terms of recording systems and site-specific factors have been compared. The shape of the time series has been recognised as one of the key parameters to identify events and to distinguish between different types of torrential processes. The results show that the site-specific factors strongly influence on the ground vibration registered at each geophone. The attenuation of the signal with the distance has been identified as linear to exponential. In addition, the assembly of the geophones to the terrain also has an important effect on the amplification of the signal. All these results highlight that the definition of ground vibration thresholds for debris-flow detection or warning purposes is a difficult task which is clearly influenced by site-specific conditions of the geophones.


2012 ◽  
Vol 204-208 ◽  
pp. 502-507 ◽  
Author(s):  
Quan Min Liu ◽  
Xun Zhang ◽  
Zhi Jun Zhang ◽  
Xiao Zhen Li

On the basis of the measured ground borne vibration of some inter-city express railway viaduct, test results analysis shows that: the test environmental vibration is under the limit set by standard of environmental vibration in urban area; whether transverse or vertical vibration, a rapid attenuation of the peak acceleration with the distance to the up-track center is observed, however the vibration at 7.5m appears to be amplified; the ground vibration with the distance conforms to a logarithmic relationship; the horizontal ground vibration at 7.5m caused by the elevated rail transit is larger 3.6cm/s2 than the vertical vibration; low-frequency vibration transfers farther than high frequency vibration; the eccentric effect of two-track viaduct is obvious.


2010 ◽  
Vol 138 (11) ◽  
pp. 4026-4034 ◽  
Author(s):  
David M. Straus

Abstract A method to incorporate synoptic eddies into the diagnosis of circulation regimes using cluster analysis is illustrated using boreal winter reanalyses of the National Centers of Environmental Prediction (hereafter observations) over the Pacific–North American region. The motivation is to include the configuration of the high-frequency (periods less than 10 days) transients as well as the low-frequency (periods greater than 10 days) flow explicitly into the definition of the regimes. Principle component analysis is applied to the low-frequency 200-hPa height field, and also to the low-frequency “envelope” modulations of the rms of high-frequency meridional velocity at 200 hPa. A maximum covariance analysis of the height and envelope fields, carried out using the appropriate principal components, defines three modes as explaining most of the covariance. This defines the minimum dimensionality of the space in which to apply k-means cluster analysis to the covariance coefficients. Clusters found using this method agree with results of the previous work. Significance is assessed by comparing cluster analyses with results from synthetic datasets that have the same spectral amplitudes (but random phases) of seasonal means and, separately, intraseasonal fluctuations as do the original observed time series. This procedure ensures that the synthetic series have similar autocovariance structures to the observations. Building on earlier work, the clusters obtained are newly tested to be highly significant without the need for quasi-stationary prefiltering.


2018 ◽  
Vol 1 ◽  
pp. 73-86
Author(s):  
Ivan Nazarenko ◽  
Oleksandr Luhovskyi ◽  
Iryna Bernyk ◽  
Anatoly Svіdersky

The processing of various vibrational low-frequency and cavitation high-frequency actions by their rheological properties is studied. A mathematical model of the motion of particles of a technological environment is determined taking into account the different nature of the dissipative forces. Two kinds of frictional forces are applied: dry at the first stage of changing the constituents of the mixture and viscous at the second, final stage of compaction of the mixture. The obtained analytical dependencies reveal the physical picture of the behavior of particles and the technological environment as a whole. The key stages of compaction to account for dry and viscous friction between the components of materials are described. It is revealed that processing at low frequencies reduces energy costs. Taking into account in vibroacoustic processes the contribution of higher harmonics greatly accelerates the process of cavitation. This is a fundamentally new result and the idea of the possibility of obtaining an effect for creating new materials. The obtained amplitudes and frequencies of oscillations of both low-frequency and high-frequency modes open a new direction in technologies for improving the quality of material processing. The main modes and parameters of vibrational and acoustic action for effective implementation of material processing processes are determined. The obtained results are applied at definition of rheological and technological parameters at various stages of processing of materials. The basic directions of quality improvement of processing environments are formulated.


2003 ◽  
Vol 46 (5) ◽  
pp. 1061-1076 ◽  
Author(s):  
Sally A. Marinellie ◽  
Cynthia J. Johnson

The present investigation is a study of the development of adjective definitions given by participants in Grades 6 and 10 and by young adults, as well as the influence of word frequency on those definitions. A total of 150 participants (50 per age group) wrote definitions for 6 high-frequency and 6 low-frequency adjectives. Adjective definitions were analyzed for use of semantic content and also grammatical form. Findings indicated that content of adjective definitions generally followed a developmental course from concrete and functional to more abstract. Response patterns of certain categories, such as superordinate, have implications for organization of the mental lexicon and suggest that adjective definitions may be less predictable than definitions of other grammatical categories, such as noun. Although conventional syntactic form was highly used in definitions (i.e., adjectival form for a definition of an adjective), verb form was also highly used. Conventional form may be less useful to characterize adjective definitions than other grammatical classes. Findings suggest that word frequency has a robust influence on adjective definitions and that development progresses differently for high- and low-frequency words.


Author(s):  
Raül Oorthuis ◽  
Marcel Hürlimann ◽  
Clàudia Abancó ◽  
José Moya ◽  
Luigi Carleo

ABSTRACT The instrumental monitoring of torrential catchments is a fundamental research task and provides necessary information to improve our understanding of the mechanisms of debris flows. While most monitoring sites include meteorological sensors and analyze the critical rainfall conditions, very few contain soil moisture measurements. In our monitoring site, the Rebaixader catchment, 11 debris flows and 24 debris floods were detected during the last 9 years. Herein, the initiation mechanisms of these torrential flows were analyzed, focusing on the critical rainfall conditions and the soil water dynamics. Comparing the temporal distribution of both rainfall episodes and torrential flows, the Kernel density plots showed maximum values for rainfalls at the beginning of June, while the peak for torrential flows is on July 20. Thus, the antecedent rainfall, and especially the soil moisture conditions, may influence the triggering of torrential flows. In a second step, a new updated rainfall threshold was proposed that included total rainfall duration and mean intensity. The analysis of soil moisture data was more complicated, and no clear trends were observed in the data set. Therefore, additional data have to be recorded in order to quantitatively analyze the role of soil moisture on the triggering of flows and for the definition of thresholds. Some preliminary results show that the soil moisture at the beginning of a rainfall event affects the maximum increase of soil moisture, while a slight trend was visible comparing the initial soil moisture with the necessary rainfall amount to trigger a torrential flow.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


1992 ◽  
Vol 1 (4) ◽  
pp. 52-55 ◽  
Author(s):  
Gail L. MacLean ◽  
Andrew Stuart ◽  
Robert Stenstrom

Differences in real ear sound pressure levels (SPLs) with three portable stereo system (PSS) earphones (supraaural [Sony Model MDR-44], semiaural [Sony Model MDR-A15L], and insert [Sony Model MDR-E225]) were investigated. Twelve adult men served as subjects. Frequency response, high frequency average (HFA) output, peak output, peak output frequency, and overall RMS output for each PSS earphone were obtained with a probe tube microphone system (Fonix 6500 Hearing Aid Test System). Results indicated a significant difference in mean RMS outputs with nonsignificant differences in mean HFA outputs, peak outputs, and peak output frequencies among PSS earphones. Differences in mean overall RMS outputs were attributed to differences in low-frequency effects that were observed among the frequency responses of the three PSS earphones. It is suggested that one cannot assume equivalent real ear SPLs, with equivalent inputs, among different styles of PSS earphones.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


Sign in / Sign up

Export Citation Format

Share Document