scholarly journals Monitoring and analysis of Woda landslide stability (China) combined with InSAR, GNSS and meteorological data

2021 ◽  
Author(s):  
Bingquan Li ◽  
Wenliang Jiang ◽  
Yongsheng Li ◽  
Yi Luo ◽  
Haitao Qian ◽  
...  

Abstract. Detecting the slow motions of high and distant landslides in remote mountain areas has always been a problem. This paper takes the Woda landslide along the Jinsha River as an example to monitor landslide movement. Although some parts of the landslide body have been found to have moved in recent years, the timing and magnitude of motion have not been systematically monitored or interpreted. Here, we apply the SBAS time series strategy using 65-scene Sentinel-1A/B satellite InSAR images and study the spatial distribution and temporal behaviour of landslide movements between July 4, 2018, and August 29, 2020. Our research results show that the cumulative deformation on the left side of the landslide body with concentrated deformation was approximately 200 mm during the 2-year observation period. By calculating the relationship between the InSAR time series and the precipitation around the landslide, it is found that the landslide deformation is closely related to rainfall. GNSS technology is also deployed on the landslide mass and effectively complements InSAR technology. Simultaneously, based on the results of field surveys and hydrological data analysing the landslide's spatial deformation characteristics and deformation factors, the landslide deformation can also be inferred to be related to precipitation. The method used in this paper can be used for early recognition and early warning of high and remote landslides.

Landslides ◽  
2021 ◽  
Author(s):  
Chuang Song ◽  
Chen Yu ◽  
Zhenhong Li ◽  
Veronica Pazzi ◽  
Matteo Del Soldato ◽  
...  

AbstractInterferometric Synthetic Aperture Radar (InSAR) enables detailed investigation of surface landslide movements, but it cannot provide information about subsurface structures. In this work, InSAR measurements were integrated with seismic noise in situ measurements to analyse both the surface and subsurface characteristics of a complex slow-moving landslide exhibiting multiple failure surfaces. The landslide body involves a town of around 6000 inhabitants, Villa de la Independencia (Bolivia), where extensive damages to buildings have been observed. To investigate the spatial-temporal characteristics of the landslide motion, Sentinel-1 displacement time series from October 2014 to December 2019 were produced. A new geometric inversion method is proposed to determine the best-fit sliding direction and inclination of the landslide. Our results indicate that the landslide is featured by a compound movement where three different blocks slide. This is further evidenced by seismic noise measurements which identified that the different dynamic characteristics of the three sub-blocks were possibly due to the different properties of shallow and deep slip surfaces. Determination of the slip surface depths allows for estimating the overall landslide volume (9.18 · 107 m3). Furthermore, Sentinel-1 time series show that the landslide movements manifest substantial accelerations in early 2018 and 2019, coinciding with increased precipitations in the late rainy season which are identified as the most likely triggers of the observed accelerations. This study showcases  the potential of integrating InSAR and seismic noise techniques to understand the landslide mechanism from ground to subsurface.


2015 ◽  
Vol 3 (6) ◽  
pp. 3861-3895 ◽  
Author(s):  
P. Benevides ◽  
J. Catalao ◽  
P. M. A. Miranda

Abstract. The temporal behaviour of Precipitable Water Vapour (PWV) retrieved from GPS delay data is analysed in a number of case studies of intense precipitation in the Lisbon area, in the period 2010–2012, and in a continuous annual cycle of 2012 observations. Such behaviour is found to correlate positively with the probability of precipitation, especially in cases of severe rainfall. The evolution of the GPS PWV in a few stations is analysed by a least-squares fitting of a broken line tendency, made by a temporal sequence of ascents and descents over the data. It is found that most severe rainfall event occurs in descending trends after a long ascending period, and that the most intense events occur after steep ascents in PWV. A simple algorithm, forecasting rain in the 6 h after a steep ascent of the GPS PWV in a single station is found to produce reasonable forecasts of the occurrence of precipitation in the nearby region, without significant misses in what concerns larger rain events, but with a substantial amount of false alarms. It is suggested that this method could be improved by the analysis of 2-D or 3-D time varying GPS PWV fields, or by its joint use with other meteorological data relevant to nowcast precipitation.


2021 ◽  
Vol 13 (19) ◽  
pp. 3845
Author(s):  
Guangbo Ren ◽  
Jianbu Wang ◽  
Yunfei Lu ◽  
Peiqiang Wu ◽  
Xiaoqing Lu ◽  
...  

Climate change has profoundly affected global ecological security. The most vulnerable region on Earth is the high-latitude Arctic. Identifying the changes in vegetation coverage and glaciers in high-latitude Arctic coastal regions is important for understanding the process and impact of global climate change. Ny-Ålesund, the northern-most human settlement, is typical of these coastal regions and was used as a study site. Vegetation and glacier changes over the past 35 years were studied using time series remote sensing data from Landsat 5/7/8 acquired in 1985, 1989, 2000, 2011, 2015 and 2019. Site survey data in 2019, a digital elevation model from 2009 and meteorological data observed from 1985 to 2019 were also used. The vegetation in the Ny-Ålesund coastal zone showed a trend of declining and then increasing, with a breaking point in 2000. However, the area of vegetation with coverage greater than 30% increased over the whole study period, and the wetland moss area also increased, which may be caused by the accelerated melting of glaciers. Human activities were responsible for the decline in vegetation cover around Ny-Ålesund owing to the construction of the town and airport. Even in areas with vegetation coverage of only 13%, there were at least five species of high-latitude plants. The melting rate of five major glaciers in the study area accelerated, and approximately 82% of the reduction in glacier area occurred after 2000. The elevation of the lowest boundary of the five glaciers increased by 50–70 m. The increase in precipitation and the average annual temperature after 2000 explains the changes in both vegetation coverage and glaciers in the study period.


2021 ◽  
Author(s):  
Amanda MY Chu ◽  
Jacky NL Chan ◽  
Jenny TY Tsang ◽  
Agnes Tiwari ◽  
Mike KP So

UNSTRUCTURED Communicable diseases including COVID-19 pose a major threat to public health worldwide. To curb the spread of communicable diseases effectively, timely surveillance and prediction of the risk of pandemics are essential. The aim of this study is to analyze free and publicly available data to construct useful travel data records for network statistics other than common descriptive statistics. This study describes analytical findings of time-series plots and spatial-temporal maps to illustrate or visualize pandemic connectedness. We analyzed data retrieved from the web-based Collaborative Arrangement for the Prevention and Management of Public Health Events in Civil Aviation dashboard, which contains up-to-date and comprehensive meta-information on civil flights from 193 national governments in accordance with the airport, country, city, latitude, and the longitude of flight origin and the destination. We used the database to visualize pandemic connectedness through the workflow of travel data collection, network construction, data aggregation, travel statistics calculation, and visualization with time-series plots and spatial-temporal maps. We observed similar patterns in the time-series plots of worldwide daily flights from January to early-March of 2019 and 2020. A sharp reduction in the number of daily flights recorded in mid-March 2020 was likely related to large-scale air travel restrictions owing to the COVID-19 pandemic. The levels of connectedness between places are strong indicators of the risk of a pandemic. Since the initial reports of COVID-19 cases worldwide, a high network density and reciprocity in early-March 2020 served as early signals of the COVID-19 pandemic and were associated with the rapid increase in COVID-19 cases in mid-March 2020. The spatial-temporal map of connectedness in Europe on March 13, 2020, shows the highest level of connectedness among European countries, which reflected severe outbreaks of COVID-19 in late March and early April of 2020. As a quality control measure, we used the aggregated numbers of international flights from April to October 2020 to compare the number of international flights officially reported by the International Civil Aviation Organization with the data collected from the Collaborative Arrangement for the Prevention and Management of Public Health Events in Civil Aviation dashboard, and we observed high consistency between the 2 data sets. The flexible design of the database provides users access to network connectedness at different periods, places, and spatial levels through various network statistics calculation methods in accordance with their needs. The analysis can facilitate early recognition of the risk of a current communicable disease pandemic and newly emerging communicable diseases in the future.


2016 ◽  
Vol 8 (3) ◽  
pp. 179 ◽  
Author(s):  
Yanan Jiang ◽  
Mingsheng Liao ◽  
Zhiwei Zhou ◽  
Xuguo Shi ◽  
Lu Zhang ◽  
...  

2020 ◽  
Vol 12 (22) ◽  
pp. 3733
Author(s):  
Wei Liu ◽  
Jian Wang ◽  
Jiancheng Luo ◽  
Zhifeng Wu ◽  
Jingdong Chen ◽  
...  

Accurate, timely, and reliable farmland mapping is a prerequisite for agricultural management and environmental assessment in mountainous areas. However, in these areas, high spatial heterogeneity and diversified planting structures together generate various small farmland parcels with irregular shapes that are difficult to accurately delineate. In addition, the absence of optical data caused by the cloudy and rainy climate impedes the use of time-series optical data to distinguish farmland from other land use types. Automatic delineation of farmland parcels in mountain areas is still a very difficult task. This paper proposes an innovative precise farmland parcel extraction approach supported by very high resolution(VHR) optical image and time series synthetic aperture radar(SAR) data. Firstly, Google satellite imagery with a spatial resolution of 0.55 m was used for delineating the boundaries of ground parcel objects in mountainous areas by a hierarchical extraction scheme. This scheme divides farmland into four types based on the morphological features presented in optical imagery, and designs different extraction models to produce each farmland type, respectively. The potential farmland parcel distribution map is then obtained by the layered recombination of these four farmland types. Subsequently, the time profile of each parcel in this map was constructed by five radar variables from the Sentinel-1A dataset, and the time-series classification method was used to distinguish farmland parcels from other types. An experiment was carried out in the north of Guiyang City, Guizhou Province, Southwest China. The result shows that, the producer’s accuracy of farmland parcels obtained by the hierarchical scheme is increased by 7.39% to 96.38% compared with that without this scheme, and the time-series classification method produces an accuracy of 80.83% to further obtain the final overall accuracy of 96.05% for the farmland parcel maps, showing a good performance. In addition, through visual inspection, this method has a better suppression effect on background noise in mountainous areas, and the extracted farmland parcels are closer to the actual distribution of the ground farmland.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1040 ◽  
Author(s):  
Kai Cheng ◽  
Juanle Wang

Efficient methodologies for mapping forest types in complicated mountain areas are essential for the implementation of sustainable forest management practices and monitoring. Existing solutions dedicated to forest-type mapping are primarily focused on supervised machine learning algorithms (MLAs) using remote sensing time-series images. However, MLAs are challenged by complex and problematic forest type compositions, lack of training data, loss of temporal data caused by clouds obscuration, and selection of input feature sets for mountainous areas. The time-weighted dynamic time warping (TWDTW) is a supervised classifier, an adaptation of the dynamic time warping method for time series analysis for land cover classification. This study evaluates the performance of the TWDTW method that uses a combination of Sentinel-2 and Landsat-8 time-series images when applied to complicated mountain forest-type classifications in southern China with complex topographic conditions and forest-type compositions. The classification outputs were compared to those produced by MLAs, including random forest (RF) and support vector machine (SVM). The results presented that the three forest-type maps obtained by TWDTW, RF, and SVM have high consistency in spatial distribution. TWDTW outperformed SVM and RF with mean overall accuracy and mean kappa coefficient of 93.81% and 0.93, respectively, followed by RF and SVM. Compared with MLAs, TWDTW method achieved the higher classification accuracy than RF and SVM, with even less training data. This proved the robustness and less sensitivities to training samples of the TWDTW method when applied to mountain forest-type classifications.


2019 ◽  
Vol 26 (8) ◽  
Author(s):  
Lidia Redondo-Bravo ◽  
Claudia Ruiz-Huerta ◽  
Diana Gomez-Barroso ◽  
María José Sierra-Moros ◽  
Agustín Benito ◽  
...  

Abstract Background Of febrile illnesses in Europe, dengue is second only to malaria as a cause of travellers being hospitalized. Local transmission has been reported in several European countries, including Spain. This study assesses the evolution of dengue-related admissions in Spain in terms of time, geographical distribution and individuals’ common characteristics; it also creates a predictive model to evaluate the risk of local transmission. Methods This is a retrospective study using the Hospital Discharge Records Database from 1997 to 2016. We calculated hospitalization rates and described clinical characteristics. Spatial distribution and temporal behaviour were also assessed, and a predictive time series model was created to estimate expected cases in the near future. Figures for resident foreign population, Spanish residents’ trips to endemic regions and the expansion of Aedes albopictus were also evaluated. Results A total of 588 dengue-related admissions were recorded: 49.6% were women, and the mean age was 34.3 years. One person died (0.2%), 82% presented with mild-to-moderate dengue and 7–8% with severe dengue. We observed a trend of steady and consistent increase in incidence (P < 0.05), in parallel with the increase in trips to dengue-endemic regions. Most admissions occurred during the summer, showing significant seasonality with 3-year peaks. We also found important regional differences. According to the predictive time series analysis, a continuing increase in imported dengue incidence can be expected in the near future, which, in the worst case scenario (upper 95% confidence interval), would mean an increase of 65% by 2025. Conclusion We present a nationwide study based on hospital, immigration, travel and entomological data. The constant increase in dengue-related hospitalizations, in combination with wider vector distribution, could imply a higher risk of autochthonous dengue transmission in the years to come. Strengthening the human and vector surveillance systems is a necessity, as are improvements in control measures, in the education of the general public and in fostering their collaboration in order to reduce the impact of imported dengue and to prevent the occurrence of autochthonous cases.


Sign in / Sign up

Export Citation Format

Share Document