scholarly journals Field observations of the 17 July 2006 Tsunami in Java

2007 ◽  
Vol 7 (1) ◽  
pp. 177-183 ◽  
Author(s):  
F. Lavigne ◽  
C. Gomez ◽  
M. Giffo ◽  
P. Wassmer ◽  
C. Hoebreck ◽  
...  

Abstract. The 17 July 2006, a tsunami struck the southern coast of Java, Indonesia, causing over 730 casualties. The triggering earthquake located 225 km off the coast of Pangandaran (9.222° S, 107.320° E), occurred at 15:19 LT (UTC +7) with a 7.7 magnitude on the Richter scale (Harward Center and CEA/DAM). In order to calibrate numerical models and understand the phenomenon, we conducted a 6-weeks field survey in July and August 2006 from Cimerak district in West Java to Gunung Kidul district in Central Java. Data collection involved measurements of wave height before its breaking, flow depth, run-up height, inundation depth, flow directions and a detailed chronology of the tsunami. Eyewitnesses accounted for three main waves. The maximum height of the second wave ranged from 4.2 to 8.6 m before its breaking. Maximum flow depth after the wave's breaking reached 5 m, and maximum runup heights reached 15.7 m. Our run-up values are about 1.5 higher than those obtained by the other field surveys carried out until present. They are also higher than the values computed through preliminary models. The 17 July 2006 tsunami has been generated by a "tsunami earthquake", i.e. an earthquake of low or medium scale that triggers a tsunami of high magnitude. The run-up heights progressively decreased eastwards, which is consistent with a tsunami triggered by fault dislocation, as the one that hit the Nicaragua's coast with similar run-up heights on the 2 September 1992. An earthquake with associated landslides could also have generated the 17 July 2006 tsunami, as ever observed in Papua-New-Guinea in 1998.

2010 ◽  
Vol 10 (1) ◽  
pp. 139-148 ◽  
Author(s):  
V. V. Lima ◽  
J. M. Miranda ◽  
M. A. Baptista ◽  
J. Catalão ◽  
M. Gonzalez ◽  
...  

Abstract. Coastal areas are highly exposed to natural hazards associated with the sea. In all cases where there is historical evidence for devastating tsunamis, as is the case of the southern coasts of the Iberian Peninsula, there is a need for quantitative hazard tsunami assessment to support spatial planning. Also, local authorities must be able to act towards the population protection in a preemptive way, to inform "what to do" and "where to go" and in an alarm, to make people aware of the incoming danger. With this in mind, we investigated the inundation extent, run-up and water depths, of a 1755-like event on the region of Huelva, located on the Spanish southwestern coast, one of the regions that was affected in the past by several high energy events, as proved by historical documents and sedimentological data. Modelling was made with a slightly modified version of the COMCOT (Cornell Multi-grid Coupled Tsunami Model) code. Sensitivity tests were performed for a single source in order to understand the relevance and influence of the source parameters in the inundation extent and the fundamental impact parameters. We show that a 1755-like event will have a dramatic impact in a large area close to Huelva inundating an area between 82 and 92 km2 and reaching maximum run-up around 5 m. In this sense our results show that small variations on the characteristics of the tsunami source are not too significant for the impact assessment. We show that the maximum flow depth and the maximum run-up increase with the average slip on the source, while the strike of the fault is not a critical factor as Huelva is significantly far away from the potential sources identified up to now. We also show that the maximum flow depth within the inundated area is very dependent on the tidal level, while maximum run-up is less affected, as a consequence of the complex morphology of the area.


2020 ◽  
Vol 20 (7) ◽  
pp. 1919-1930
Author(s):  
Gerardo Zegers ◽  
Pablo A. Mendoza ◽  
Alex Garces ◽  
Santiago Montserrat

Abstract. Over the past decades, several numerical models have been developed to understand, simulate and predict debris flow events. Typically, these models simplify the complex interactions between water and solids using a single-phase approach and different rheological models to represent flow resistance. In this study, we perform a sensitivity analysis on the parameters of a debris flow numerical model (FLO-2D) for a suite of relevant variables (i.e., maximum flood area, maximum flow velocity, maximum height and deposit volume). Our aims are to (i) examine the degree of model overparameterization and (ii) assess the effectiveness of observational constraints to improve parameter identifiability. We use the Distributed Evaluation of Local Sensitivity Analysis (DELSA) method, which is a hybrid local–global technique. Specifically, we analyze two creeks in northern Chile (∼29∘ S, 70∘ W) that were affected by debris flows on 25 March 2015. Our results show that SD (surface detention) and β1 (a parameter related to viscosity) provide the largest sensitivities. Further, our results demonstrate that equifinality is present in FLO-2D and that the final deposited volume and maximum flood area contain considerable information to identify model parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shohei Iwai ◽  
Kazuhisa Goto

AbstractAround the world, numerous coastal boulders with weight of few thousand tons are suspected to have been transported by very large tsunamis, although their origins remain enigmatic. For clarifying origins of these boulders, the relation between the tsunami flow depth and the movement of meter-size boulders should be clarified but there is no proper field dataset. Here we collected first comprehensive dataset of both moved and unmoved boulders as well as the maximum flow depths along the Sanriku coast of Japan, where was affected by the 2011 Tohoku-oki tsunami based on satellite image analyses and field survey. The dataset revealed that up to ca. 1500 tons of boulders and concrete blocks were moved by the 2011 tsunami with approx. 28 m flow depth. We further revealed that most unmoved boulders were not moved because of the local setting rather than their heavy weights. The threshold of moved/unmoved boulders is estimated against the flow depth. The threshold predicted that approx. > 20 m flow depths are required to move approx. > 1000 tons boulders. The results imply that even a few thousand tons of enigmatic boulders in the world could have been moved by these sizes of the tsunami flow depths, although applicability of our results to other examples should be evaluated in the future work. We further tested the validity of an earlier proposed inverse model. Although the model result is consistent with the field observation, assumption of the appropriate parameters is problematic and further improvement of the model is required to estimate hydrodynamic features of the tsunami and to discriminate tsunami boulders from storm ones. Regarding such future work, our dataset is expected to be important for the evaluation of the improved numerical models.


Author(s):  
Frank S. Levin

Surfing the Quantum World bridges the gap between in-depth textbooks and typical popular science books on quantum ideas and phenomena. Among its significant features is the description of a host of mind-bending phenomena, such as a quantum object being in two places at once or a certain minus sign being the most consequential in the universe. Much of its first part is historical, starting with the ancient Greeks and their concepts of light, and ending with the creation of quantum mechanics. The second part begins by applying quantum mechanics and its probability nature to a pedagogical system, the one-dimensional box, an analog of which is a musical-instrument string. This is followed by a gentle introduction to the fundamental principles of quantum theory, whose core concepts and symbolic representations are the foundation for most of the subsequent chapters. For instance, it is shown how quantum theory explains the properties of the hydrogen atom and, via quantum spin and Pauli’s Exclusion Principle, how it accounts for the structure of the periodic table. White dwarf and neutron stars are seen to be gigantic quantum objects, while the maximum height of mountains is shown to have a quantum basis. Among the many other topics considered are a variety of interference phenomena, those that display the wave properties of particles like electrons and photons, and even of large molecules. The book concludes with a wide-ranging discussion of interpretational and philosophic issues, introduced in Chapters 14 by entanglement and 15 by Schrödinger’s cat.


2011 ◽  
Vol 11 (10) ◽  
pp. 2835-2846 ◽  
Author(s):  
N. Valencia ◽  
A. Gardi ◽  
A. Gauraz ◽  
F. Leone ◽  
R. Guillande

Abstract. In the framework of the European SCenarios for tsunami Hazard-induced Emergencies MAnagement (SCHEMA) project (www.schemaproject.org), we empirically developed new tsunami damage functions to be used for quantifying the potential tsunami damage to buildings along European-Mediterranean coasts. Since no sufficient post-tsunami observations exist in the Mediterranean areas, we based our work on data collected by several authors in Banda Aceh (Indonesia) after the 2004 Indian Ocean tsunami. Obviously, special attention has been paid in focusing on Indonesian buildings which present similarities (in structure, construction material, number of storeys) with the building typologies typical of the European-Mediterranean areas. An important part of the work consisted in analyzing, merging, and interpolating the post-disaster observations published by three independent teams in order to obtain the spatial distribution of flow depths necessary to link the flow-depth hazard parameter to the damage level observed on buildings. Then we developed fragility curves (showing the cumulative probability to have, for each flow depth, a damage level equal-to or greater-than a given threshold) and damage curves (giving the expected damage level) for different classes of buildings. It appears that damage curves based on the weighted mean damage level and the maximum flow depth are the most appropriate for producing, under GIS, expected damage maps for different tsunami scenarios.


2017 ◽  
Author(s):  
Francesc X. Roig-Munar ◽  
Josep M. Vilaplana ◽  
Antoni Rodríguez-Perea ◽  
José A. Martín-Prieto ◽  
Bernadí Gelabert

Abstract. Large boulders have been found on marine cliffs of 24 study areas of Minorca, Balearic Archipelago. These large imbricated boulders, of up to 229 tonnes, are located on platforms that conform the rocky coastline of Minorca, several tenths of meters from the edge of the cliff, up to 15 m above the sea level, and kilometres away from any inland escarpment. They are mostly located on the southeast coast of the island, and numerical models have identified this coastline as a high tsunami impact zone. The age of the boulders in most of the studied localities show a good correlation with historical tsunamis. Age of the boulders, direction of imbrication and estimation of run-up necessary for their placement, indicate dislodging and transport by North Africa tsunami waves that hit the coastline of Minorca.


Author(s):  
Rafael Aranguiz ◽  
Oscar Link ◽  
Jose Aliaga ◽  
Oscar Briones ◽  
Ruben Alarcon ◽  
...  

Estimation of the maximum scour depth is important for defining the size and depth of building foundations in order to avoid failure during a tsunami event (Jayaratne, et al 2016). Traditionally, tsunami scour has been studied in laboratory experiments that use solitary waves. However, it has been demonstrated that this type of wave does not represent well a real tsunami (Madsen et al, 2008). In addition, results from field surveys are based on the scour depth after the tsunami event, studying only the maximum flow depth, and ignoring other hydrodynamic features such as velocity and wave period, as well as sediment deposition. The main objective of this research is to estimate maximum tsunami scour around rectangular structures as a function of realistic tsunami variables.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/ykb-JyL7lsE


2003 ◽  
Vol 44 (159) ◽  
pp. 7-19
Author(s):  
Ljubomir Madzar

Reform endeavors run up against various sorts of constraints. A major set of constraints is the one derived from the lack of information and knowledge. This category of constraints is inextricably linked with the size of the reform undertakings. The architects of reforms do not have the knowledge needed for designing big institutional changes. Moreover, the big changes take the system far a field from its initial position, the one to be overcome by the reform process. Both features generate two distinct types of uncertainty which are sources of potential hazards and could easily produce the breakdown of the system as a whole with well-known disastrous consequences. This reasoning turns down to the standard argument of feasibility and (there- fore) desirability of the Popper-like piecemeal engineering. Another important issue is the necessity/desirability of preserving old institutions while the new ones are being built lest institutional vacua be developed with disastrous consequences. The argument is analogous to the tenor of the Burke critique of the French Revolution. The upshot of the analysis is that quick implementation of the far-reaching changes is not to be expected and that the going criticisms of the alleged sluggishness of reforms are to some extent ill-advised.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3221
Author(s):  
Lucie Dal Soglio ◽  
Charles Danquigny ◽  
Naomi Mazzilli ◽  
Christophe Emblanch ◽  
Gérard Massonnat

The main outlets of karst systems are springs, the hydrographs of which are largely affected by flow processes in the unsaturated zone. These processes differ between the epikarst and transmission zone on the one hand and the matrix and conduit on the other hand. However, numerical models rarely consider the unsaturated zone, let alone distinguishing its subsystems. Likewise, few models represent conduits through a second medium, and even fewer do this explicitly with discrete features. This paper focuses on the interest of hybrid models that take into account both unsaturated subsystems and discrete conduits to simulate the reservoir-scale response, especially the outlet hydrograph. In a synthetic karst aquifer model, we performed simulations for several parameter sets and showed the ability of hybrid models to simulate the overall response of complex karst aquifers. Varying parameters affect the pathway distribution and transit times, which results in a large variety of hydrograph shapes. We propose a classification of hydrographs and selected characteristics, which proves useful for analysing the results. The relationships between model parameters and hydrograph characteristics are not all linear; some of them have local extrema or threshold limits. The numerous simulations help to assess the sensitivity of hydrograph characteristics to the different parameters and, conversely, to identify the key parameters which can be manipulated to enhance the modelling of field cases.


Author(s):  
Gabriele Vissio ◽  
Valerio Lucarini

AbstractThe understanding of the fundamental properties of the climate system has long benefitted from the use of simple numerical models able to parsimoniously represent the essential ingredients of its processes. Here, we introduce a new model for the atmosphere that is constructed by supplementing the now-classic Lorenz ’96 one-dimensional lattice model with temperature-like variables. The model features an energy cycle that allows for energy to be converted between the kinetic form and the potential form and for introducing a notion of efficiency. The model’s evolution is controlled by two contributions—a quasi-symplectic and a gradient one, which resemble (yet not conforming to) a metriplectic structure. After investigating the linear stability of the symmetric fixed point, we perform a systematic parametric investigation that allows us to define regions in the parameters space where at steady-state stationary, quasi-periodic, and chaotic motions are realised, and study how the terms responsible for defining the energy budget of the system depend on the external forcing injecting energy in the kinetic and in the potential energy reservoirs. Finally, we find preliminary evidence that the model features extensive chaos. We also introduce a more complex version of the model that is able to accommodate for multiscale dynamics and that features an energy cycle that more closely mimics the one of the Earth’s atmosphere.


Sign in / Sign up

Export Citation Format

Share Document