scholarly journals Accounting for hydro-climatic and water use variability in the assessment of past and future water balance at the basin scale

Author(s):  
J. Fabre ◽  
D. Ruelland ◽  
A. Dezetter ◽  
B. Grouillet

Abstract. This study assesses water stress by 2050 in river basins facing increasing human and climatic pressures, by comparing the impacts of various combinations of possible future socio-economic and climate trends. A modelling framework integrating human and hydro-climatic dynamics and accounting for interactions between resource and demand at a 10-day time step was developed and applied in two basins of different sizes and with contrasted water uses: the Herault (2500 km2, France) and the Ebro (85 000 km2, Spain) basins. Natural streamflow was evaluated using a conceptual hydrological model (GR4j). A demand-driven reservoir management model was designed to account for streamflow regulations from the main dams. Urban water demand was estimated from time series of population and monthly unit water consumption data. Agricultural water demand was computed from time series of irrigated area, crop and soil data, and climate forcing. Indicators comparing water supply to demand at strategic resource and demand nodes were computed. This framework was successfully calibrated and validated under non-stationary human and hydro-climatic conditions over the last 40 years before being applied under four combinations of climatic and water use scenarios to differentiate the impacts of climate- and human-induced changes on streamflow and water balance. Climate simulations from the CMIP5 exercise were used to generate 18 climate scenarios at the 2050 horizon. A baseline water use scenario for 2050 was designed based on demographic and local socio-economic trends. Results showed that projected water uses are not sustainable under climate change scenarios.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1657
Author(s):  
Chul-Hee Lim

Climate change has inherent multidisciplinary characteristics, and predicting the future of a single field of work has a limit. Therefore, this study proposes a water-centric nexus approach for the agriculture and forest sectors for improving the response to climate change in the Korean Peninsula. Two spatial models, i.e., Environmental Policy Integrated Climate and Integrated Valuation of Ecosystem Services and Tradeoffs, were used to assess the extent of changes in agricultural water demand, forest water supply, and their balance at the watershed level in the current and future climatic conditions. Climate changed has increased the agricultural water demand and forest water supply significantly in all future scenarios and periods. Comparing the results with RCP8.5 2070s and the baseline, the agricultural water demand and forest water supply increased by 35% and 28%, respectively. Water balance assessment at the main watershed level in the Korean Peninsula revealed that although most scenarios of the future water supply increases offset the demand growth, a risk to water balance exists in case of a low forest ratio or smaller watershed. For instance, the western plains, which are the granary regions of South and North Korea, indicate a higher risk than other areas. These results show that the land-use balance can be an essential factor in a water-centric adaptation to climate change. Ultimately, the water-centric nexus approach can make synergies by overcoming increasing water demands attributable to climate change.


2021 ◽  
pp. 217-224
Author(s):  
A. Raviraj ◽  
Ramachandran J ◽  
Nitin Kaushal ◽  
Arjit Mishra

Reduction in agricultural water use and increasing the sustainability of water resources can be achieved by studying the water balance of the area and crop water demand. In this paper, by using a simple water balance model, Evapotranspiration, Rainfall, Runoff, Water Demand and Water Requirement different crops are estimated. The crop water requirement and crop water demand for different crops grown in the Periya Pallam Catchment of Upper Bhavani Basin, Tamilnadu, was estimated. Water balance estimation of the area reveals that out of the annual rainfall, runoff is estimated to be 129 mm, effective rainfall is 252 mm, and deep percolation is about 67 mm. The demand for water for agriculture in the study area is about 61 million cubic meters (MCM), but only 19 MCM of water is available through precipitation in the form of effective rainfall. Hence, the remaining 43 MCM of water is supplied through groundwater and other sources. The results will pave the way for sustainable crop water use planning and would achieve water security in the basin.


2020 ◽  
Author(s):  
Thomas Baumgartl ◽  
Mandana Shaygan

<p><span>Numerical modelling is a tool allowing the prediction of water flow and water balance based on material properties and time dependent input information at defined boundaries. Long time series are often required for a well informed assessment of the performance of a site. It has been shown that covers as a preferred option constructed in semi-arid and arid climates on mine sites to manage water flows and to prevent deep drainage have a characteristic bi-modal pore system largely caused by a large fraction of coarse rocks. Bi-modal water retention curves have been established for such covers which have proven to describe the response to precipitation with higher accuracy. Meteorological data as input information are in many cases only available on a daily basis if time series over decades are used for modelling. For a bi-modal pore system with often very high values for saturated hydraulic conductivity, a daily time-step may be to large to capture numerically the response in water flow. The objective of the presented work is the comparison of modelled deep drainage data for a specific cover design where hourly data are compared with daily input data. The latter were aggregated from the hourly information. </span></p><p><span>The results from the numerical modelling showed that for environments with high intensity rainfall events the calculated amount of deep drainage was by up to 10% smaller for the aggregated daily input data compared to the hourly data.</span></p><p><span>The presentation will inform which rainfall events contributed primarily to the difference in the water balance parameters and to which extent a generalisation can be made on the choice or requirement to choose an appropriate time step for specific climatic conditions.</span></p>


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 922 ◽  
Author(s):  
Diana Fiorillo ◽  
Enrico Creaco ◽  
Francesco De Paola ◽  
Maurizio Giugni

This paper presents a comparison between two procedures for the generation of water demand time series at both single user and nodal scales, a top-down and a bottom-up procedure respectively. Both procedures are made up of two phases. The top-down procedure adopted includes a non-parametric disaggregation based on the K-nearest neighbours approach. Therefore, once the temporal aggregated water demand patterns have been defined (first phase), the disaggregation is used to generate water demand time series at lower levels of spatial aggregation (second phase). In the bottom-up procedure adopted, demand time series for each user and for each time step are generated applying a beta probability distribution with tunable bounds or a gamma distribution with shift parameter (first phase). Then, a Copula based re-sort is applied to the demand time series generated to impose existing rank cross-correlations between users and at all temporal lags (second phase). For the sake of comparison, two case studies were considered, both of which are related to a smart water network in Naples (Italy). The results obtained show that the bottom-up procedure performs significantly better than the top-down procedure in terms of rank-cross correlations at fine scale. However, the top-down procedure showed a better performance in terms of skewness and rank cross-correlation when the aggregated demands were considered. Finally, the level of aggregation in nodes was found to affect the performance of both the procedures considered.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 643
Author(s):  
Irene Marzola ◽  
Stefano Alvisi ◽  
Marco Franchini

Leakages in water distribution systems have great economic and environmental impacts and are a major issue for water utilities. In this work, the water balance and the Minimum Night Flow (MNF) method for evaluating the amount of water loss, as well as the power and Fixed and Variable Area Discharge (FAVAD) equations for analyzing the relationship between leakage and pressure, were applied to a fully monitored District Metered Area (DMA) located in Gorino Ferrarese (FE, Italy). Time series of (a) the water consumption of each user, (b) the DMA inflow, and (c) the pressure at the DMA inlet point were monitored with a 5 min time step. The results of an analysis carried out by exploiting the collected time series highlighted that: (a) The application of the MNF method based on literature values can lead to significant inaccuracies in the presence of users with irregular consumption, and (b) the estimation of the parameters of the power and FAVAD equations is highly affected by the amounts and types of observed data used.


2018 ◽  
Vol 8 (2) ◽  
Author(s):  
Halima Malaka ◽  
M. Yanuar ◽  
J. Purwanto ◽  
Alinda Zein

This research was conducted at Tidore Island, –Tidore City, North Maluku Archipelago Province. Objective of this study were  1) build a water balance model Tidore Island. This Method used in this research is method of survey with water balance analysis. Analysis of the data used is the analysis of dynamic system to determine the balance of the year 2009 - 2032 with software stella version 9.0.2. The result of analysis showed that in 2009 there were water balance 21,189,941.20 m3 / year and in 2032 there was a deficit of 427,678.61 m3 / year. Water availability index (IKA) in 2009 amounted to 1416.10 and in the year 2032 amounted to 82.54 IKA the value, it indicates that in 2032 the availability of groundwater only able to serve 82.54% the water demand. To improve the balance of water needed for water saving and conservation policies at each land use.Saving measures water use and conservation of groundwater done using three policy scenarios, the model simulation results indicate that both scenarios can increase the efficiency of water use and water balance in 2009 to 21,270,444.14 m3 / year with a value of 1490.63 and value IKA in 2032 can be water deficit of 31128.46 m3 / year. While the results of the simulation scenario 3 scenario between saving integrated water use and conservation can improve the water balance in 2009 amounted to 21,350,947.08 m3 / year and the value IKA 1573.44, and in 2032 the value decreased to 117.92 IKA shows the availability of ground water able to serve 117.92% of  water demand  people. Keywords: water balance,system dynamic, water demand, ground water availability


2012 ◽  
Vol 32 ◽  
pp. 15-21 ◽  
Author(s):  
K. Förster ◽  
M. Gelleszun ◽  
G. Meon

Abstract. In order to simulate long-term water balances hydrologic models have to be parameterized for several types of vegetation. Furthermore, a seasonal dependence of vegetation parameters has to be accomplished for a successful application. Many approaches neglect inter-annual variability and shifts due to climate change. In this paper a more comprehensive approach from literature was evaluated and applied to long-term water balance simulations, which incorporates temperature, humidity and maximum bright sunshine hours per day to calculate a growing season index (GSI). A validation of this threshold-related approach is carried out by comparisons with normalized difference vegetation index (NDVI) data and observations from the phenological network in the state of Lower Saxony. The annual courses of GSI and NDVI show a good agreement for numerous sites. A comparison with long-term observations of leaf onset and offset taken from the phenological network also revealed a good model performance. The observed trends indicating a shift toward an earlier leaf onset of 3 days per decade in the lowlands were reproduced very well. The GSI approach was implemented in the hydrologic model Panta Rhei. For the common vegetation parameters like leaf area index, vegetated fraction, albedo and the vegetation height a minimum value and a maximum value were defined for each land surface class. These parameters were scaled with the computed GSI for every time step to obtain a seasonal course for each parameter. Two simulations were carried out each for the current climate and for future climate scenarios. The first run was parameterized with a static annual course of vegetation parameters. The second run incorporates the new GSI approach. For the current climate both models produced comparable results regarding the water balance. Although there are no significant changes in modeled mean annual evapotranspiration and runoff depth in climate change scenarios, mean monthly values of these water balance components are shifted toward a lower runoff in spring and higher values during the winter months.


Author(s):  
E.V. Fedotova

В данной статье приведен перечень водоисточников каналов и насосных станций, плановые показатели забора воды и водоподачи в Карачаево-Черкесской республике, Республике Адыгее и Краснодарском крае. Рассмотрены значения водопотребности для орошения сельскохозяйственных культур для природно-климатических условий Краснодарского края, Республики Адыгея, Республики Карачаево-Черкессия. Проанализированы показатели плана водопользования и поливов сельскохозяйственных культур на орошаемых землях.This article provides channels water sources and pumping stations list, planned water intake and water supply indicators in the Karachay-Cherkess Republic, the Republic of Adygea and the Krasnodar territory. Considered the values of agricultural crops irrigation water demand for natural and climatic conditions of the Krasnodar territory, the Republic of Adygea, the Republic of Karachay-Cherkess. Analyzed the water use and irrigation plan indicators of the agricultural crops on irrigated lands.


2015 ◽  
Vol 19 (3) ◽  
pp. 1263-1285 ◽  
Author(s):  
J. Fabre ◽  
D. Ruelland ◽  
A. Dezetter ◽  
B. Grouillet

Abstract. In this study we present an integrative modeling framework aimed at assessing the balance between water demand and availability and its spatial and temporal variability over long time periods. The model was developed and tested over the period 1971–2009 in the Hérault (2500 km2, France) and the Ebro (85 000 km2, Spain) catchments. Natural streamflow was simulated using a conceptual hydrological model. The regulation of river flow was accounted for through a widely applicable demand-driven reservoir management model applied to the largest dam in the Hérault Basin and to 11 major dams in the Ebro Basin. Urban water demand was estimated from population and monthly unit water demand data. Water demand for irrigation was computed from irrigated area, crop and soil data, and climatic forcing. Water shortage was assessed at a 10-day time step by comparing water demand and availability through indicators calculated at strategic resource and demand nodes. The outcome of this study is twofold. First, we were able to correctly simulate variations in influenced streamflow, reservoir levels and water shortage between 1971 and 2009 in both basins, taking into account climatic and anthropogenic pressures and changes in water management strategies over time. Second, we provided information not available through simple data analysis on the influence of withdrawals and consumptive use on streamflow and on the drivers of imbalance between demand and availability. Observed past variations in discharge were explained by separating anthropogenic and climatic pressures in our simulations: 3% (20%) of the decrease in the Hérault (Ebro) discharge were linked to anthropogenic changes. Although key areas of the Hérault Basin were shown to be highly sensitive to hydro-climatic variability, the balance between water demand and availability in the Ebro Basin appears to be more critical, owing to high agricultural pressure on water resources. The modeling framework developed and tested in this study will be used to assess water balance under climatic and socioeconomic prospective scenarios and to investigate the effectiveness of adaptation policies aimed at maintaining the balance between water demand and availability.


2020 ◽  
Vol 39 (4) ◽  
pp. 758-768
Author(s):  
Antti Arpalahti ◽  
Mari Lundström

Abstract The current study presents the effect of process chemistry as well as climate conditions on the water balance of a heap leach operation for black-schist ore. The research is based on the actual water balance at the Terrafame (former Talvivaara) mine site in Finland during the years 2017 and 2018 (base case). In addition, scenarios with a deviation in climatic conditions (Antofagasta case), chemistry (non-heat generation case) and effects of climate change (RCP4.5 (representative concentration pathway) case and RCP8.5 case) were investigated. In the first case, the annual precipitation and evaporation were simulated for a highly arid climate such as in the Antofagasta Mountains, whereas in the second case, an assumption was made of no excess heat generation (exothermic reactions) in the heap reactions. The base case predicted a requirement of 9,000,000 m3 annual discharge of water from the site with the heaviest annual rainfall. The discharge requirement and therefore the water footprint of the plant was shown to be highly dependent on the climatic conditions, as the Antofagasta case predicted a discharge of water from the site as low as zero. Heat generation, typical of the reactions dominating in a boreal black-schist heap leach operation, was shown to be vital for water management operations and therefore discharge management in Nordic climatic conditions (the non-heat generation case), where the discharge requirement was shown to be nearly threefold compared to the base case (2018). If the black-schist ore body resided in Antofagasta, the freshwater consumption would be over eight times the current consumption in the base case in Finland. Climate change scenarios show that the changing climate would increase the range of variation but only increase the need for water discharge from the site by 5% in the wettest years, while raw water utilization would increase by 46 to 83% during the driest years. In general, the results highlight the issues related to the mass and energy balance of a heap leach nickel process, and therefore feasibility—showing that although the heat generation is ore- and process-specific, the water consumption as well as discharge to the surrounding environment is highly dependent on the climatic conditions (precipitation, temperature) in the geographical location.


Sign in / Sign up

Export Citation Format

Share Document