scholarly journals Determination of hydrological roughness by means of close range remote sensing

SOIL ◽  
2015 ◽  
Vol 1 (2) ◽  
pp. 613-620 ◽  
Author(s):  
A. Kaiser ◽  
F. Neugirg ◽  
F. Haas ◽  
J. Schmidt ◽  
M. Becht ◽  
...  

Abstract. The objective of the presented work was to develop a method to acquire Manning's n by creating very high-resolution surface models with structure-from-motion methods. As hydraulic roughness is an essential parameter for physically based erosion models, a practical measuring technique is valuable during field work. Data acquisition took place during several field experiments in the Lainbach valley, southern Germany, and on agricultural sites in Saxony, eastern Germany, and in central Brazil. Rill and interrill conditions were simulated by flow experiments. In order to validate our findings stream velocity was measured with colour tracers. Grain sizes were derived by measuring distances from a best fit line to the reconstructed soil surface. Several diameters from D50 to D90 were tested with D90 showing best correlation between tracer experiments and photogrammetrically acquired data. Several roughness parameters were tested (standard deviation, random roughness, Garbrecht's n and D90). Best agreement in between the grain size and the hydraulic roughness was achieved with a non-linear sigmoid function and D90 rather than with the Garbrecht equation or statistical parameters.

2015 ◽  
Vol 2 (1) ◽  
pp. 401-425
Author(s):  
A. Kaiser ◽  
F. Neugirg ◽  
F. Haas ◽  
J. Schmidt ◽  
M. Becht ◽  
...  

Abstract. The objective of the presented work was to develop a method to acquire Manning's n by creating very high resolution surface models with Structure from Motion-methods. As hydraulic roughness is an essential parameter for physically based erosion models, a practical measuring technique is valuable during field work. Data acquisition took place during several field experiments in the Lainbach valley, southern Germany and on agricultural sites in Saxony, eastern Germany and in central Brazil. Rill and interrill conditions were simulated by flow experiments. In order to validate our findings stream velocity was measured with colour tracers. Grain sizes were derived by measuring distances from a best fit line to the reconstructed soil surface. Several diameters from D50 to D90 were tested with D90 showing best correlation between tracer experiments and photogrammetrically acquired data. Several roughness parameters were tested (standard deviation, random roughness, Garbrechts n and D90). Best agreement in between the grain size and the hydraulic roughness was achieved with a non-linear sigmoid function and D90 rather than with the Garbrecht equation or statistical parameters.


2021 ◽  
Vol 11 (7) ◽  
pp. 2979
Author(s):  
Maxime Fortin Faubert ◽  
Dominic Desjardins ◽  
Mohamed Hijri ◽  
Michel Labrecque

The Salix genus includes shrub species that are widely used in phytoremediation and various other phytotechnologies due to their advantageous characteristics, such as a high evapotranspiration (ET) rate, in particular when cultivated in short rotation intensive culture (SRIC). Observations made in past field studies suggest that ET and its impact on soil hydrology can also lead to increases in soil pollutant concentrations near shrubs. To investigate this, sections of a mature willow plantation (seven years old) were cut to eliminate transpiration (Cut treatment). Soil concentrations of polychlorinated biphenyls (PCBs), aliphatic compounds C10–C50, polycyclic aromatic hydrocarbons (PAHs) and five trace elements (Cd, Cr, Cu, Ni and Zn) were compared between the Cut and the uncut plots (Salix miyabeana ‘SX61’). Over 24 months, the results clearly show that removal of the willow shrubs limited the contaminants’ increase in the soil surface, as observed for C10–C50 and of 10 PAHs under the Salix treatment. This finding strongly reinforces a hypothesis that SRIC of willows may facilitate the migration of contaminants towards their roots, thus increasing their concentration in the surrounding soil. Such a “pumping effect” in a high-density willow crop is a prominent characteristic specific to field studies that can lead to counterintuitive results. Although apparent increases of contaminant concentrations contradict the purification benefits usually pursued in phytoremediation, the possibility of active phytoextraction and rhizodegradation is not excluded. Moreover, increases of pollutant concentrations under shrubs following migration suggest that decreases would consequently occur at the source points. Some reflections on interpreting field work results are provided.


2017 ◽  
Vol 27 (2) ◽  
pp. 74-83 ◽  
Author(s):  
L. Felipe Daibes ◽  
Talita Zupo ◽  
Fernando A.O. Silveira ◽  
Alessandra Fidelis

AbstractInformation from a field perspective on temperature thresholds related to physical dormancy (PY) alleviation and seed resistance to high temperatures of fire is crucial to disentangle fire- and non-fire-related germination cues. We investigated seed germination and survival of four leguminous species from a frequently burned open Neotropical savanna in Central Brazil. Three field experiments were conducted according to seed location in/on the soil: (1) fire effects on exposed seeds; (2) fire effects on buried seeds; and (3) effects of temperature fluctuations on exposed seeds in gaps and shaded microsites in vegetation. After field treatments, seeds were tested for germination in the laboratory, together with the control (non-treated seeds). Fire effects on exposed seeds decreased viability in all species. However, germination of buried Mimosa leiocephala seeds was enhanced by fire in an increased fuel load treatment, in which we doubled the amount of above-ground biomass. Germination of two species (M. leiocephala and Harpalyce brasiliana) was enhanced with temperature fluctuation in gaps, but this condition also decreased seed viability. Our main conclusions are: (1) most seeds died when exposed directly to fire; (2) PY could be alleviated during hotter fires when seeds were buried in the soil; and (3) daily temperature fluctuations in gaps also broke PY of seeds on the soil surface, so many seeds could be recruited or die before being incorporated into the soil seed banks. Thus seed dormancy-break and germination of legumes from Cerrado open savannas seem to be driven by both fire and temperature fluctuations.


2021 ◽  
Author(s):  
Xiaocheng Liu ◽  
Chenming Zhang ◽  
Yue Liu ◽  
David Lockington ◽  
Ling Li

<p>Estimation of evaporation rates from soils is significant for environmental, hydrological, and agricultural purposes. Modeling of the soil surface resistance is essential to estimate the evaporation rates from bare soil. Empirical surface resistance models may cause large deviations when applied to different soils. A physically-based soil surface model is developed to calculate the surface resistance, which can consider evaporation on the soil surface when soil is fully saturated and the vapor flow below the soil surface after dry layer forming on the top. Furthermore, this physically-based expression of the surface resistance is added into a numerical model that considers the liquid water transport, water vapor transport, and heat transport during evaporation. The simulation results are in good agreement with the results from six soil column drying experiments.  This numerical model can be applied to predict or estimate the evaporation rate of different soil and saturation at different depths during evaporation.</p>


2021 ◽  
Vol 0 (1) ◽  
pp. 12-15
Author(s):  
Daler Domullodzhanov

The article presents the results of field experiments on the study of the technology of drip irrigation of a young almond orchard on terraces with clear cover with tillage soil surface, with use of mulching and overseeding of perennial grasses. In the variant with mulching, the minimum amount of irrigation observed – 24, with the irrigation norm – 1904 litre per tree. In other cases, the number of irrigation events increases from 8 to 23, respectively, the irrigation norms are 1.39 and 2.06 times.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1581
Author(s):  
Mohamed Alkassem Alosman ◽  
Stéphane Ruy ◽  
Samuel Buis ◽  
Patrice Lecharpentier ◽  
Jean Bader ◽  
...  

Surface irrigation is known as a highly water-consuming system and needs to be optimized to save water. Models can be used for this purpose but require soil parameters at the field scale. This paper aims to estimate effective soil parameters by combining: (i) a surface flow-infiltration model, namely CALHY; (ii) an automatic fitting algorithm based on the SIMPLEX method; and (iii) easily accessible and measurable data, some of which had never been used in such a process, thus minimizing parameter estimation errors. The validation of the proposed approach was performed through three successive steps: (1) examine the physical meaning of the fitted parameters; (2) verify the accuracy of the proposed approach using data that had not been served in the fitting process; and (3) validate using data obtained from independent irrigation events. Three parameters were estimated with a low uncertainty: the saturated hydraulic conductivity Ks, the hydraulic roughness k, and the soil water depletion ∆θ. The estimation uncertainty of the soil surface depressional storage parameter H0 was of the same order of magnitude of its value. All experimental datasets were simulated very well. Performance criteria were similar during both the fitting and validation stages.


2013 ◽  
Vol 33 (4) ◽  
pp. 699-708 ◽  
Author(s):  
Mariana M. Corradi ◽  
Alan R. Panosso ◽  
Marcílio V. Martins Filho ◽  
Newton La Scala Junior

The proper management of agricultural crop residues could produce benefits in a warmer, more drought-prone world. Field experiments were conducted in sugarcane production areas in the Southern Brazil to assess the influence of crop residues on the soil surface in short-term CO2 emissions. The study was carried out over a period of 50 days after establishing 6 plots with and without crop residues applied to the soil surface. The effects of sugarcane residues on CO2 emissions were immediate; the emissions from residue-covered plots with equivalent densities of 3 (D50) and 6 (D100) t ha-1 (dry mass) were less than those from non-covered plots (D0). Additionally, the covered fields had lower soil temperatures and higher soil moisture for most of the studied days, especially during the periods of drought. Total emissions were as high as 553.62 ± 47.20 g CO2 m-2, and as low as 384.69 ± 31.69 g CO2 m-2 in non-covered (D0) and covered plot with an equivalent density of 3 t ha-1 (D50), respectively. Our results indicate a significant reduction in CO2 emissions, indicating conservation of soil carbon over the short-term period following the application of sugarcane residues to the soil surface.


2002 ◽  
Vol 82 (3) ◽  
pp. 599-610 ◽  
Author(s):  
L. M. Dosdall ◽  
R. -C. Yang ◽  
P. M. Conway

While the importance of sulfur nutrition for the development of healthy stands of canola is well documented, the role of sulfur in the management of insect pest infestations has not previously been investigated in this crop. Field experiments were conducted at three sites in central Alberta in 1997 and 1998 to determine the influence of sulfur and sulfate applications on infestations of root maggots (Delia spp.) (Diptera: Anthomyiidae) in canola (Brassica rapa L.). Different formulations (granules, powder, prills, and sprays), application methods (either drilled in with the seed or top-dressed on the soil surface), and application rates were evaluated. To assess the degree of root maggot infestation, oviposition throughout the season and damage to taproots at the end of the season were monitored. Sulfur contents were analyzed from leaf samples collected mid-season and seed yields were measured from all treatment plots. Root maggot responses to the different sulfur treatments and application methods varied among years and sites, indicating that environmental factors have great importance in determining infestation levels by these pests, and the oxidation rate of elemental sulfur in soil. Sulfur formulation and application rate had significant effects on root maggot egg deposition and root damage for some sites and years, but even at high rates of application (112 kg ha-1) reductions in infestation levels were not substantial relative to the controls. While sulfur additions alone will not greatly reduce root maggot infestation levels in canola, growers should employ adequate sulfur nutrition for optimum crop health to enable plants to better compensate for damage by these pests. Key words: Brassica rapa, Delia radicum, Delia floralis, elemental sulfur, sulfate, canola


2007 ◽  
Vol 43 (1) ◽  
pp. 79-95 ◽  
Author(s):  
F. O. OLASANTAN ◽  
A. W. SALAU ◽  
E. E. ONUH

In tropical Africa, pepper (Capsicum spp.) is grown as a rainfed crop, and its production is limited by the long, hot growing season. Field experiments were conducted in Nigeria to evaluate the effects of cassava (Manihot esculenta) on the growth and yields of three pepper cultivars and gross returns in 2001–2003. In Experiment 1, pepper (cv. Sombo) was planted between rows of cassava cvs Idileru (PI), Odongbo (PO) and TMS 30572 (PT). In Experiment 2, pepper cvs Sombo, Tatase and Atarodo, were mixed with TMS 30572 (MS, MT or MA). The growth environment for the intercropped pepper differed from sole crops of pepper. Radiant energy reaching the soil surface, maximum diurnal soil and canopy temperatures, and weed growth were lower with intercropping, with the lowest values being observed in the PI and PT intercrops. Similarly, soil moisture content and the number of earthworm casts were greater with intercropping, with the highest values also occurring in the PI and PT intercrops. In both experiments, fresh fruit yields of pepper depended on the duration of harvest, the number of fruits per plant and the weight of fruits. In Experiment 1, although the number of fruits and fruit yield of cv. Sombo were greater in the sole crop (SP) than the PO intercrop, the fruit yields in the PI and PT intercrops were similar to those of the SP plot. In Experiment 2, the number of fruits and yield of intercropped pepper cvs Tatase, Sombo and Atarodo were 25–28 % higher, on average, than in pure stands. Cassava tuber yield was not affected by intercropped pepper in either experiment. Total gross returns were greater than growing either pepper or cassava in monoculture. Increased total gross returns in the intercrops were obtained in the PI and PT treatments and in the MS and MA treatments without a significant reduction in pepper fruit yield. By promoting early fruit set and harvest, and bearing in mind the cumulative gross returns, mixing pepper and cassava enhanced the value of the vegetable, as early fresh pepper fruits command a premium price. It is concluded that pepper can be grown between cassava rows to provide a suitable environment for growth, but that this depends on the cassava cultivar. Using the less tall early cassava cultivar, with a relatively moderate leaf area index in a mixture with pepper is therefore recommended.


Sign in / Sign up

Export Citation Format

Share Document