scholarly journals Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: approaches to spectrally discriminate red and green communities and their impact on snowmelt

2021 ◽  
Vol 15 (1) ◽  
pp. 133-148
Author(s):  
Alia L. Khan ◽  
Heidi M. Dierssen ◽  
Ted A. Scambos ◽  
Juan Höfer ◽  
Raul R. Cordero

Abstract. Here, we present radiative forcing (RF) estimates by snow algae in the Antarctic Peninsula (AP) region from multi-year measurements of solar radiation and ground-based hyperspectral characterization of red and green snow algae collected during a brief field expedition in austral summer 2018. Our analysis includes pigment content from samples at three bloom sites. Algal biomass in the snow and albedo reduction are well-correlated across the visible spectrum. Relative to clean snow, visibly green patches reduce snow albedo by ∼40 % and red patches by ∼20 %. However, red communities absorb considerably more light per milligram of pigment compared to green communities, particularly in green wavelengths. Based on our study results, it should be possible to differentiate red and green algae using Sentinel-2 bands in blue, green and red wavelengths. Instantaneous RF averages were double for green (180 W m−2) vs. red communities (88 W m−2), with a maximum of 228 W m−2. Based on multi-year solar radiation measurements at Palmer Station, this translated to a mean daily RF of ∼26 W m−2 (green) and ∼13 W m−2 (red) during peak growing season – on par with midlatitude dust attributions capable of advancing snowmelt. This results in ∼2522 m3 of snow melted by green-colored algae and ∼1218 m3 of snow melted by red-colored algae annually over the summer, suggesting snow algae play a significant role in snowmelt in the AP regions where they occur. We suggest impacts of RF by snow algae on snowmelt be accounted for in future estimates of Antarctic ice-free expansion in the AP region.

2020 ◽  
Author(s):  
Alia L. Khan ◽  
Heidi Dierssen ◽  
Ted Scambos ◽  
Juan Höfer ◽  
Raul R. Cordero

Abstract. Here, we present radiative forcing (RF) estimates by snow algae in the Antarctic Peninsula (AP) region from multi-year measurements of solar radiation and ground-based hyperspectral characterization of red and green snow algae collected during a brief field expedition in austral summer 2018. Our analysis includes pigment content from samples at three bloom sites. Algal biomass in the snow and albedo reduction are well-correlated across the visible spectrum. Relative to clean snow, visibly green-patches reduce snow albedo by ~ 40 % and red-patches by ~ 20 %. However, red communities absorb considerably more light per mg of pigment compared to green communities, particularly in green wavelengths. Based on our study results, it should be possible to differentiate red and green algae using Sentinel-2 bands in blue, green and red wavelengths. Instantaneous RF averages were double for green (180 W m−2) vs. red communities (88 W m−2), with a maximum of 228 W m−2. Based on multi-year solar radiation measurements at Palmer Station, this translated to a mean daily RF of ~ 26 W m−2 (green) and ~ 13 W m−2 (red) during peak growing season – on par with mid-latitude dust attributions capable of advancing snowmelt. This results in ~ 2522 m3 of snow melted by green-colored-algae and ~ 1218 m3 of snow melted by red-colored-algae annually over the summer, suggesting snow algae play a significant role in snowmelt in the AP regions where they occur. We suggest impacts of RF by snow algae on snowmelt be accounted for in future estimates of Antarctic ice-free expansion in the AP region.


2011 ◽  
Vol 57 (202) ◽  
pp. 367-381 ◽  
Author(s):  
Francesca Pellicciotti ◽  
Thomas Raschle ◽  
Thomas Huerlimann ◽  
Marco Carenzo ◽  
Paolo Burlando

AbstractWe explore the robustness and transferability of parameterizations of cloud radiative forcing used in glacier melt models at two sites in the Swiss Alps. We also look at the rationale behind some of the most commonly used approaches, and explore the relationship between cloud transmittance and several standard meteorological variables. The 2 m air-temperature diurnal range is the best predictor of variations in cloud transmittance. However, linear and exponential parameterizations can only explain 30–50% of the observed variance in computed cloud transmittance factors. We examine the impact of modelled cloud transmittance factors on both solar radiation and ablation rates computed with an enhanced temperature-index model. The melt model performance decreases when modelled radiation is used, the reduction being due to an underestimation of incoming solar radiation on clear-sky days. The model works well under overcast conditions. We also seek alternatives to the use of in situ ground data. However, outputs from an atmospheric model (2.2 km horizontal resolution) do not seem to provide an alternative to the parameterizations of cloud radiative forcing based on observations of air temperature at glacier automatic weather stations. Conversely, the correct definition of overcast conditions is important.


2016 ◽  
Vol 16 (15) ◽  
pp. 10083-10095 ◽  
Author(s):  
Nicholas A. Davis ◽  
Dian J. Seidel ◽  
Thomas Birner ◽  
Sean M. Davis ◽  
Simone Tilmes

Abstract. Model simulations of future climates predict a poleward expansion of subtropical arid climates at the edges of Earth's tropical belt, which would have significant environmental and societal impacts. This expansion may be related to the poleward shift of the Hadley cell edges, where subsidence stabilizes the atmosphere and suppresses precipitation. Understanding the primary drivers of tropical expansion is hampered by the myriad forcing agents in most model projections of future climate. While many previous studies have examined the response of idealized models to simplified climate forcings and the response of comprehensive climate models to more complex climate forcings, few have examined how comprehensive climate models respond to simplified climate forcings. To shed light on robust processes associated with tropical expansion, here we examine how the tropical belt width, as measured by the Hadley cell edges, responds to simplified forcings in the Geoengineering Model Intercomparison Project (GeoMIP). The tropical belt expands in response to a quadrupling of atmospheric carbon dioxide concentrations and contracts in response to a reduction in the solar constant, with a range of a factor of 3 in the response among nine models. Models with more surface warming and an overall stronger temperature response to quadrupled carbon dioxide exhibit greater tropical expansion, a robust result in spite of inter-model differences in the mean Hadley cell width, parameterizations, and numerical schemes. Under a scenario where the solar constant is reduced to offset an instantaneous quadrupling of carbon dioxide, the Hadley cells remain at their preindustrial width, despite the residual stratospheric cooling associated with elevated carbon dioxide levels. Quadrupled carbon dioxide produces greater tropical belt expansion in the Southern Hemisphere than in the Northern Hemisphere. This expansion is strongest in austral summer and autumn. Ozone depletion has been argued to cause this pattern of changes in observations and model experiments, but the results here indicate that seasonally and hemispherically asymmetric tropical expansion can be a basic response of the general circulation to climate forcings.


2021 ◽  
Vol 14 (1) ◽  
pp. 179
Author(s):  
Kesar Chand ◽  
Jagdish Chandra Kuniyal ◽  
Shruti Kanga ◽  
Raj Paul Guleria ◽  
Gowhar Meraj ◽  
...  

The extensive work on the increasing burden of aerosols and resultant climate implications shows a matter of great concern. In this study, we investigate the aerosol optical depth (AOD) variations in the Indian Himalayan Region (IHR) between its plains and alpine regions and the corresponding consequences on the energy balance on the Himalayan glaciers. For this purpose, AOD data from Moderate Resolution Imaging Spectroradiometer (MODIS, MOD-L3), Aerosol Robotic Network (AERONET), India, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) were analyzed. Aerosol radiative forcing (ARF) was assessed using the atmospheric radiation transfer model (RTM) integrated into AERONET inversion code based on the Discrete Ordinate Radiative Transfer (DISORT) module. Further, air mass trajectory over the entire IHR was analyzed using a hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. We estimated that between 2001 and 2015, the monthly average ARF at the surface (ARFSFC), top of the atmosphere (ARFTOA), and atmosphere (ARFATM) were −89.6 ± 18.6 Wm−2, −25.2 ± 6.8 Wm−2, and +64.4 ± 16.5 Wm−2, respectively. We observed that during dust aerosol transport days, the ARFSFC and TOA changed by −112.2 and −40.7 Wm−2, respectively, compared with low aerosol loading days, thereby accounting for the decrease in the solar radiation by 207% reaching the surface. This substantial decrease in the solar radiation reaching the Earth’s surface increases the heating rate in the atmosphere by 3.1-fold, thereby acting as an additional forcing factor for accelerated melting of the snow and glacier resources of the IHR.


2003 ◽  
Vol 69 (8) ◽  
pp. 4884-4891 ◽  
Author(s):  
Kevin A. Hughes

ABSTRACT Factors affecting fecal microorganism survival and distribution in the Antarctic marine environment include solar radiation, water salinity, temperature, sea ice conditions, and fecal input by humans and local wildlife populations. This study assessed the influence of these factors on the distribution of presumptive fecal coliforms around Rothera Point, Adelaide Island, Antarctic Peninsula during the austral summer and winter of February 1999 to September 1999. Each factor had a different degree of influence depending on the time of year. In summer (February), although the station population was high, presumptive fecal coliform concentrations were low, probably due to the biologically damaging effects of solar radiation. However, summer algal blooms reduced penetration of solar radiation into the water column. By early winter (April), fecal coliform concentrations were high, due to increased fecal input by migrant wildlife, while solar radiation doses were low. By late winter (September), fecal coliform concentrations were high near the station sewage outfall, as sea ice formation limited solar radiation penetration into the sea and prevented wind-driven water circulation near the outfall. During this study, environmental factors masked the effect of station population numbers on sewage plume size. If sewage production increases throughout the Antarctic, environmental factors may become less significant and effective sewage waste management will become increasingly important. These findings highlight the need for year-round monitoring of fecal coliform distribution in Antarctic waters near research stations to produce realistic evaluations of sewage pollution persistence and dispersal.


Author(s):  
Juan Sulca ◽  
Mathias Vuille ◽  
Oliver Elison Timm ◽  
Bo Dong ◽  
Ricardo Zubieta

AbstractPrecipitation is one of the most difficult variables to estimate using large-scale predictors. Over South America (SA), this task is even more challenging, given the complex topography of the Andes. Empirical-Statistical Downscaling (ESD) models can be used for this purpose, but such models, applicable for all of SA, have not yet been developed. To address this issue, we construct an ESD model based on multiple linear regression techniques for the period 1982-2016 that is based on large-scale circulation indices representing tropical Pacific, Atlantic, and South American climate variability, to estimate austral summer (DJF) precipitation over SA.Statistical analyses show that the ESD model can reproduce observed precipitation anomalies over the tropical Andes (Ecuador, Colombia, Peru, and Bolivia), the eastern equatorial Amazon basin, and the central part of the western Argentinian Andes. On a smaller scale, the ESD model also shows good results over the western Cordillera of the Peruvian Andes.The ESD model reproduces anomalously dry conditions over the eastern equatorial Amazon and the wet conditions over Southeastern South America (SESA) during the three extreme El Niño’s 1982/83, 1997/98, and 2015/16. However, it overestimates the observed intensities over SESA. For the central Peruvian Andes as a case study, results further show that the ESD model can correctly reproduce DJF precipitation anomalies over the entire Mantaro basin during the three extreme El ñ episodes.Moreover, multiple experiments with varying predictor combinations of the ESD model corroborate the hypothesis that the interaction between the South Atlantic Convergence Zone (SACZ) and the equatorial Atlantic Ocean provoked the Amazon drought in 2015/16.


2005 ◽  
Vol 18 (22) ◽  
pp. 4637-4648 ◽  
Author(s):  
Melanie F. Fitzpatrick ◽  
Stephen G. Warren

Abstract Downward solar irradiance at the sea surface, measured on several voyages of an icebreaker in the Southern Ocean, is used to infer transmittance of solar radiation by clouds. Together with surface albedo estimated from coincident hourly sea ice reports, instantaneous cloud radiative forcing and effective cloud optical depth are obtained. Values of “raw cloud transmittance” (trc), the ratio of downward irradiance under cloud to downward irradiance measured under clear sky, vary from 0.1 to 1.0. Over sea ice, few values of trc were observed between 0.8 and 1.0, possibly due to the threshold nature of the aerosol-to-cloud-droplet transition. This sparsely populated region of transmittances is referred to as the Köhler gap. The instantaneous downward shortwave cloud radiative forcing is computed, as well as the time-averaged net forcing. The net forcing at a solar zenith angle of 60° is typically −250 W m−2 over open ocean, but only half this value over sea ice because of the higher surface albedo and less frequent occurrence of clouds. “Effective” optical depths τ (for a radiatively equivalent horizontally homogeneous cloud) are classified by season and surface type. The frequency distributions of τ are well fitted by decaying exponentials, giving a characteristic optical depth of 15 at 47°S, increasing to 24 in the region of maximum cloud cover at 58°S, and decreasing to 11 at 67°S near the coast of Antarctica.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andrew Gray ◽  
Monika Krolikowski ◽  
Peter Fretwell ◽  
Peter Convey ◽  
Lloyd S. Peck ◽  
...  

Snow algae are an important group of terrestrial photosynthetic organisms in Antarctica, where they mostly grow in low lying coastal snow fields. Reliable observations of Antarctic snow algae are difficult owing to the transient nature of their blooms and the logistics involved to travel and work there. Previous studies have used Sentinel 2 satellite imagery to detect and monitor snow algal blooms remotely, but were limited by the coarse spatial resolution and difficulties detecting red blooms. Here, for the first time, we use high-resolution WorldView multispectral satellite imagery to study Antarctic snow algal blooms in detail, tracking the growth of red and green blooms throughout the summer. Our remote sensing approach was developed alongside two Antarctic field seasons, where field spectroscopy was used to build a detection model capable of estimating cell density. Global Positioning System (GPS) tagging of blooms and in situ life cycle analysis was used to validate and verify our model output. WorldView imagery was then used successfully to identify red and green snow algae on Anchorage Island (Ryder Bay, 67°S), estimating peak coverage to be 9.48 × 104 and 6.26 × 104 m2, respectively. Combined, this was greater than terrestrial vegetation area coverage for the island, measured using a normalized difference vegetation index. Green snow algae had greater cell density and average layer thickness than red blooms (6.0 × 104 vs. 4.3 × 104 cells ml−1) and so for Anchorage Island we estimated that green algae dry biomass was over three times that of red algae (567 vs. 180 kg, respectively). Because the high spatial resolution of the WorldView imagery and its ability to detect red blooms, calculated snow algal area was 17.5 times greater than estimated with Sentinel 2 imagery. This highlights a scaling problem of using coarse resolution imagery and suggests snow algal contribution to net primary productivity on Antarctica may be far greater than previously recognized.


2011 ◽  
Vol 11 (3) ◽  
pp. 8777-8799
Author(s):  
B. Barja ◽  
J. C. Antuña

Abstract. Cirrus clouds play a key role in the radiation budget of the Earth system. They are an important aspect in the climate system, as they interact with the atmospheric radiation field. They control both the solar radiation that reaches the Earth surface and the longwave radiation that leaves the Earth system. The feedback produced by cirrus clouds in climate is not well understood. Therefore it is necessary to improve the understanding and characterization of the radiative forcing of cirrus clouds. We analyze the effect of optically thin cirrus clouds characterized with the lidar technique in Camagüey, Cuba, on solar radiation, by numerical simulation. Nature and amplitude of the effect of cirrus clouds on solar radiation is evaluated. Cirrus clouds have a cooling effect in the solar spectrum at the Top of the Atmosphere (TOA) and at the surface (SFC). The daily mean value of solar cirrus cloud radiative forcing (SCRF) has an average value of −9.1 W m−2 at TOA and −5.6 W m−2 at SFC. The cirrus clouds also have a local heating effect on the atmospheric layer where they are located. Cirrus clouds have mean daily values of heating rates of 0.63 K day−1 with a range between 0.35 K day−1 and 1.24 K day−1. The principal effect is in the near infrared spectral band of the solar spectrum. There is a linear relation between SCRF and cirrus clouds optical depth (COD), with −30 W m−2 COD−1 and −26 W m−2 COD−1, values for the slopes of the fits at the TOA and SFC, respectively in the broadband solar spectrum. Also there is a relation between the solar zenith angle and cirrus clouds radiative forcing displayed in the diurnal cycle.


Sign in / Sign up

Export Citation Format

Share Document