scholarly journals Coupled Land Surface-Subsurface Hydrogeophysical Inverse Modeling to Estimate Soil Organic Content and explore associated Hydrological and Thermal Dynamics in an Arctic Tundra

2017 ◽  
Author(s):  
Anh Phuong Tran ◽  
Baptiste Dafflon ◽  
Susan S. Hubbard

Abstract. Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface–subsurface hydrological-thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological-thermal processes associated with annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets, including soil water liquid, temperature and electrical resistivity data (ERT), to estimate the vertical distribution of OC content. We subsequently explore the control of OC on hydrological-thermal behavior. We employ the Community Land Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes and ice/liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate posterior distributions of desired model parameters. For hydrological-thermal to geophysical variable transformation, the simulated subsurface temperature, liquid and ice water content are explicitly linked to the soil apparent resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the estimation of OC and other parameters. We also quantified the propagation of uncertainty from the estimated parameters to prediction of hydrological-thermal responses. We find that compared to inversion of single dataset (either temperature or liquid or apparent resistivity), joint inversion of these datasets significantly reduces parameter uncertainty. We find that the joint inversion approach is able to estimate OC and sand content within the shallow active layer (0.3 m) with high reliability. Due to the small variations of temperature and moisture within the shallow permafrost (0.6 m), the approach is unable to estimate OC with confidence. However, if the soil porosity is functionally related to the OC and mineral content, the uncertainty of OC estimate at this depth remarkably decreases. Our study documents the value of the new surface-subsurface, deterministic-stochastic inversion approach, as well as the benefit of including multiple types of data to estimate OC and associated hydrological-thermal dynamics.

2017 ◽  
Vol 11 (5) ◽  
pp. 2089-2109 ◽  
Author(s):  
Anh Phuong Tran ◽  
Baptiste Dafflon ◽  
Susan S. Hubbard

Abstract. Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface–subsurface hydrological–thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon–climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological–thermal processes associated with annual freeze–thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets – including soil liquid water content, temperature and electrical resistivity tomography (ERT) data – to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological–thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface–subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice–liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological–thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the estimation of OC and other parameters. We also quantify the propagation of uncertainty from the estimated parameters to prediction of hydrological–thermal responses. We find that, compared to inversion of single dataset (temperature, liquid water content or apparent resistivity), joint inversion of these datasets significantly reduces parameter uncertainty. We find that the joint inversion approach is able to estimate OC and sand content within the shallow active layer (top 0.3 m of soil) with high reliability. Due to the small variations of temperature and moisture within the shallow permafrost (here at about 0.6 m depth), the approach is unable to estimate OC with confidence. However, if the soil porosity is functionally related to the OC and mineral content, which is often observed in organic-rich Arctic soil, the uncertainty of OC estimate at this depth remarkably decreases. Our study documents the value of the new surface–subsurface, deterministic–stochastic inversion approach, as well as the benefit of including multiple types of data to estimate OC and associated hydrological–thermal dynamics.


2020 ◽  
Author(s):  
Lukas Strebel ◽  
Klaus Goergen ◽  
Bibi S. Naz ◽  
Heye Bogena ◽  
Harry Vereecken ◽  
...  

<p>Modeling forest ecosystems is important to facilitate adaptations in forest management approaches necessary to address the challenges of climate change, particularly of interest are ecohydrological states and fluxes such as soil water content, biomass, leaf area index, and evapotranspiration.</p><p>The community land model in its current version 5 (CLM5) simulates a broad collection of important land-surface processes; from moisture and energy partitioning, through biogeophysical processes, to surface and subsurface runoff. Additionally, CLM5 contains a biogeochemistry model (CLM5-BGC) which includes prognostic computation of vegetation states and carbon and nitrogen pools. However, CLM5 predictions are affected by uncertainty related to uncertain model forcings and parameters. Here, we use data assimilation methods to improve model performance by assimilating soil water content observations into CLM5 using the parallel data assimilation framework (PDAF).</p><p> </p><p>The coupled modeling framework was applied to the small (38.5 ha) forested catchment Wüstebach located in the Eifel National Park near the German-Belgian border. As part of the terrestrial environmental observatories (TERENO) network, the SoilNet sensors at the study site provide soil water content and soil temperature measurements since 2009.</p><p>CLM5 simulations for the period 2009-2100 were made, using local atmospheric observations for the period of 2009-2018 and an ensemble of regional climate model projections for 2019-2100. Simulations illustrate that data assimilation of soil water content improves the characterization of past model states, and that estimated model parameters and default model parameters result in different trajectories of ecohydrological states for 2019-2100. The simulations also illustrate that this site is hardly affected by increased water stress in the future.</p><p>The developed framework will be extended and applied for both ecosystem reanalysis as well as further simulations using climate projections across forested sites over Europe.</p>


2019 ◽  
Author(s):  
Elias C. Massoud ◽  
Chonggang Xu ◽  
Rosie Fisher ◽  
Ryan Knox ◽  
Anthony Walker ◽  
...  

Abstract. Vegetation plays a key role in regulating global carbon cycles and is a key component of the Earth System Models (ESMs) aimed to project Earth's future climates. In the last decade, the vegetation component within ESMs has witnessed great progresses from simple 'big-leaf' approaches to demographically-structured approaches, which has a better representation of plant size, canopy structure, and disturbances. The demographically-structured vegetation models are typically controlled by a large number of parameters, and sensitivity analysis is generally needed to quantify the impact of each parameter on the model outputs for a better understanding of model behaviors. In this study, we use the Fourier Amplitude Sensitivity Test (FAST) to diagnose the Community Land Model coupled to the Ecosystem Demography Model, or CLM4.5(ED). We investigate the first and second order sensitivities of the model parameters to outputs that represent simulated growth and mortality as well as carbon fluxes and stocks. While the photosynthetic capacity parameter Vc,max25 is found to be important for simulated carbon stocks and fluxes, we also show the importance of carbon storage and allometry parameters, which are shown here to determine vegetation demography and carbon stocks through their impacts on survival and growth strategies. The results of this study highlights the importance of understanding the dynamics of the next generation of demographically-enabled vegetation models within ESMs toward improved model parameterization and model structure for better model fidelity.


2015 ◽  
Vol 12 (9) ◽  
pp. 6971-7015 ◽  
Author(s):  
J. Mao ◽  
D. M. Ricciuto ◽  
P. E. Thornton ◽  
J. M. Warren ◽  
A. W. King ◽  
...  

Abstract. Carbon allocation and flow through ecosystems regulate land surface–atmosphere CO2 exchange and thus is a key, albeit uncertain, component of mechanistic models. The Partitioning in Trees and Soil (PiTS) experiment-model project tracked carbon allocation through a young Pinus taeda stand following pulse-labeling with 13CO2 and two levels of shading. The field component of this project provided process-oriented data that was used to evaluate and improve terrestrial biosphere model simulations of rapid shifts in carbon allocation and hydrological dynamics under varying environmental conditions. Here we tested the performance of the Community Land Model version 4 (CLM4) in capturing short-term carbon and water dynamics in relation to manipulative shading treatments, and the timing and magnitude of carbon fluxes through various compartments of the ecosystem. For CLM4 to closely simulate pretreatment conditions, we calibrated select model parameters with pretreatment observational data. Compared to CLM4 simulations with default parameters, CLM4 with calibrated model parameters was able to better simulate pretreatment vegetation carbon pools, light response curves, and other initial states and fluxes of carbon and water. Over a 3 week treatment period, the calibrated CLM4 generally reproduced the impacts of shading on average soil moisture at 15–95 cm depth, transpiration, relative change in stem carbon, and soil CO2 efflux rate, although some discrepancies in the estimation of magnitudes and temporal evolutions existed. CLM4, however, was not able to track the progression of the 13CO2 label from the atmosphere through foliage, phloem, roots or surface soil CO2 efflux, even when optimized model parameters were used. This model bias arises, in part, from the lack of a short-term non-structural carbohydrate storage pool and progressive timing of within-plant transport, thus indicating a need for future work to improve the allocation routines in CLM4. Overall, these types of detailed evaluations of CLM4, paired with intensive field manipulations, can help to identify model strengths and weaknesses, model uncertainties, and additional observations necessary for future model development.


2017 ◽  
Vol 21 (9) ◽  
pp. 4927-4958 ◽  
Author(s):  
Hongjuan Zhang ◽  
Harrie-Jan Hendricks Franssen ◽  
Xujun Han ◽  
Jasper A. Vrugt ◽  
Harry Vereecken

Abstract. Land surface models (LSMs) use a large cohort of parameters and state variables to simulate the water and energy balance at the soil–atmosphere interface. Many of these model parameters cannot be measured directly in the field, and require calibration against measured fluxes of carbon dioxide, sensible and/or latent heat, and/or observations of the thermal and/or moisture state of the soil. Here, we evaluate the usefulness and applicability of four different data assimilation methods for joint parameter and state estimation of the Variable Infiltration Capacity Model (VIC-3L) and the Community Land Model (CLM) using a 5-month calibration (assimilation) period (March–July 2012) of areal-averaged SPADE soil moisture measurements at 5, 20, and 50 cm depths in the Rollesbroich experimental test site in the Eifel mountain range in western Germany. We used the EnKF with state augmentation or dual estimation, respectively, and the residual resampling PF with a simple, statistically deficient, or more sophisticated, MCMC-based parameter resampling method. The performance of the calibrated LSM models was investigated using SPADE water content measurements of a 5-month evaluation period (August–December 2012). As expected, all DA methods enhance the ability of the VIC and CLM models to describe spatiotemporal patterns of moisture storage within the vadose zone of the Rollesbroich site, particularly if the maximum baseflow velocity (VIC) or fractions of sand, clay, and organic matter of each layer (CLM) are estimated jointly with the model states of each soil layer. The differences between the soil moisture simulations of VIC-3L and CLM are much larger than the discrepancies among the four data assimilation methods. The EnKF with state augmentation or dual estimation yields the best performance of VIC-3L and CLM during the calibration and evaluation period, yet results are in close agreement with the PF using MCMC resampling. Overall, CLM demonstrated the best performance for the Rollesbroich site. The large systematic underestimation of water storage at 50 cm depth by VIC-3L during the first few months of the evaluation period questions, in part, the validity of its fixed water table depth at the bottom of the modeled soil domain.


2019 ◽  
Vol 12 (9) ◽  
pp. 4133-4164 ◽  
Author(s):  
Elias C. Massoud ◽  
Chonggang Xu ◽  
Rosie A. Fisher ◽  
Ryan G. Knox ◽  
Anthony P. Walker ◽  
...  

Abstract. Vegetation plays an important role in regulating global carbon cycles and is a key component of the Earth system models (ESMs) that aim to project Earth's future climate. In the last decade, the vegetation component within ESMs has witnessed great progress from simple “big-leaf” approaches to demographically structured approaches, which have a better representation of plant size, canopy structure, and disturbances. These demographically structured vegetation models typically have a large number of input parameters, and sensitivity analysis is needed to quantify the impact of each parameter on the model outputs for a better understanding of model behavior. In this study, we conducted a comprehensive sensitivity analysis to diagnose the Community Land Model coupled to the Functionally Assembled Terrestrial Simulator, or CLM4.5(FATES). Specifically, we quantified the first- and second-order sensitivities of the model parameters to outputs that represent simulated growth and mortality as well as carbon fluxes and stocks for a tropical site with an extent of 1×1∘. While the photosynthetic capacity parameter (Vc,max25) is found to be important for simulated carbon stocks and fluxes, we also show the importance of carbon storage and allometry parameters, which determine survival and growth strategies within the model. The parameter sensitivity changes with different sizes of trees and climate conditions. The results of this study highlight the importance of understanding the dynamics of the next generation of demographically enabled vegetation models within ESMs to improve model parameterization and structure for better model fidelity.


2013 ◽  
Vol 14 (3) ◽  
pp. 808-828 ◽  
Author(s):  
Hongyi Li ◽  
Mark S. Wigmosta ◽  
Huan Wu ◽  
Maoyi Huang ◽  
Yinghai Ke ◽  
...  

Abstract A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a “tributary subnetwork” before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration. MOSART has been applied to the Columbia River basin at ⅙°, ⅛°, ¼°, and ½° spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a postprocessor in the Variable Infiltration Capacity (VIC) model package, yielding consistent performance at multiple resolutions. MOSART is further evaluated using the channel velocities derived from field measurements or a hydraulic model at various locations and is shown to be capable of producing the seasonal variation and magnitude of channel velocities reasonably well at different resolutions. Moreover, the impacts of spatial resolution on model simulations are systematically examined at local and regional scales. Finally, the limitations of MOSART and future directions for improvements are discussed.


2020 ◽  
pp. 052
Author(s):  
Jean-Christophe Calvet ◽  
Jean-Louis Champeaux

Cet article présente les différentes étapes des développements réalisés au CNRM des années 1990 à nos jours pour spatialiser à diverses échelles les simulations du modèle Isba des surfaces terrestres. Une attention particulière est portée sur l'intégration, dans le modèle, de données satellitaires permettant de caractériser la végétation. Deux façons complémentaires d'introduire de l'information géographique dans Isba sont présentées : cartographie de paramètres statiques et intégration au fil de l'eau dans le modèle de variables observables depuis l'espace. This paper presents successive steps in developments made at CNRM from the 1990s to the present-day in order to spatialize the simulations of the Isba land surface model at various scales. The focus is on the integration in the model of satellite data informative about vegetation. Two complementary ways to integrate geographic information in Isba are presented: mapping of static model parameters and sequential assimilation of variables observable from space.


Author(s):  
Sheng-Jia Ruan ◽  
Yan-Hui Lin

Standby redundancy can meet system safety requirements in industries with high reliability standards. To evaluate reliability of standby systems, failure dependency among components has to be considered especially when systems have load-sharing characteristics. In this paper, a reliability analysis and state transfer scheduling optimization framework is proposed for the load-sharing 1-out-of- N: G system equipped with M warm standby components and subject to continuous degradation process. First, the system reliability function considering multiple dependent components is derived in a recursive way. Then, a Monte Carlo method is developed and the closed Newton-Cotes quadrature rule is invoked for the system reliability quantification. Besides, likelihood functions are constructed based on the measurement information to estimate the model parameters of both active and standby components, whose degradation paths are modeled by the step-wise drifted Wiener processes. Finally, the system state transfer scheduling is optimized by the genetic algorithm to maximize the system reliability at mission time. The proposed methodology and its effectiveness are illustrated through a case study referring to a simplified aircraft hydraulic system.


Author(s):  
Geir Evensen

AbstractIt is common to formulate the history-matching problem using Bayes’ theorem. From Bayes’, the conditional probability density function (pdf) of the uncertain model parameters is proportional to the prior pdf of the model parameters, multiplied by the likelihood of the measurements. The static model parameters are random variables characterizing the reservoir model while the observations include, e.g., historical rates of oil, gas, and water produced from the wells. The reservoir prediction model is assumed perfect, and there are no errors besides those in the static parameters. However, this formulation is flawed. The historical rate data only approximately represent the real production of the reservoir and contain errors. History-matching methods usually take these errors into account in the conditioning but neglect them when forcing the simulation model by the observed rates during the historical integration. Thus, the model prediction depends on some of the same data used in the conditioning. The paper presents a formulation of Bayes’ theorem that considers the data dependency of the simulation model. In the new formulation, one must update both the poorly known model parameters and the rate-data errors. The result is an improved posterior ensemble of prediction models that better cover the observations with more substantial and realistic uncertainty. The implementation accounts correctly for correlated measurement errors and demonstrates the critical role of these correlations in reducing the update’s magnitude. The paper also shows the consistency of the subspace inversion scheme by Evensen (Ocean Dyn. 54, 539–560 2004) in the case with correlated measurement errors and demonstrates its accuracy when using a “larger” ensemble of perturbations to represent the measurement error covariance matrix.


Sign in / Sign up

Export Citation Format

Share Document