scholarly journals Modelling supraglacial debris-cover evolution from the single glacier to the regional scale: an application to High Mountain Asia

2021 ◽  
Author(s):  
Loris Compagno ◽  
Matthias Huss ◽  
Evan Stewart Miles ◽  
Michael James McCarthy ◽  
Harry Zekollari ◽  
...  

Abstract. Currently, about 12–13 % of High Mountain Asia's glacier area is debris-covered, altering its surface mass balance. However, in regional-scale modelling approaches, debris-covered glaciers are typically treated as clean-ice glaciers, leading to a potential bias when modelling their future evolution. Here, we present a new approach for modelling debris area and thickness evolution, applicable from single glaciers to the global scale. We implement the module into the Global Glacier Evolution Model (GloGEMflow), a combined mass-balance ice-flow model. The module is initialized with both glacier-specific observations of the debris’ spatial distribution and estimates of debris thickness, accounts for the fact that debris can either enhance or reduce surface melt depending on thickness, and enables representing the spatio-temporal evolution of debris extent and thickness. We calibrate and evaluate the module on a select subset of glaciers, and apply the model using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia until 2100. Compared to 2020, total glacier volume is expected to decrease by between 35 ± 15 % and 80 ±11 %, which is in line with projections in the literature. Depending on the scenario, the mean debris-cover fraction is expected to increase, while mean debris thickness is modelled to show only minor changes, albeit large local thickening is expected. To isolate the influence of explicitly accounting for supraglacial debris-cover, we re-compute glacier evolution without the debris-cover module. We show that glacier geometry, area, volume and flow velocity evolve differently, especially at the level of individual glaciers. This highlights the importance of accounting for debris-cover and its spatio-temporal evolution when projecting future glacier changes.

2016 ◽  
Author(s):  
C. Vincent ◽  
P. Wagnon ◽  
J. M. Shea ◽  
W. W. Immerzel ◽  
P. D. A. Kraaijenbrink ◽  
...  

Abstract. Debris-covered glaciers occupy more than 1/4 of the total glacierized area in the Everest region of Nepal, yet the surface mass balance of these glaciers has not been measured directly. In this study, ground-based measurements of surface elevation and ice depth are combined with terrestrial photogrammetry and unmanned aerial vehicle (UAV) elevation models to derive the surface mass balance of the debris-covered Changri Nup Glacier, located in the Everest region. Over the debris-covered tongue, the mean elevation change between 2011 and 2015 is −0.93 m ice/year or −0.84 m water equivalent per year (w.e. a−1). The mean emergence velocity over this region, estimated from the total ice flux through a cross-section immediately above the debris-covered zone, is +0.37 m w.e. a−1. The debris-covered portion of the glacier thus has an area-averaged mass balance of −1.21 ± 0.2 m w.e. a−1 between 5240 and 5525 m above sea level (m a.s.l.). The surface mass balances observed on nearby debris-free glaciers suggest that the ablation is strongly reduced (by ca. 1.8 m w.e. a−1) by the debris cover. The insulating effect of the debris cover largely dominates the enhanced ice ablation due to the supra-glacial ponds and exposed ice cliffs. This finding has major implications for modeling the future evolution of debris-covered glaciers.


2020 ◽  
Author(s):  
Evan Miles ◽  
Michael McCarthy ◽  
Amaury Dehecq ◽  
Marin Kneib ◽  
Stefan Fugger ◽  
...  

<p>Glaciers in High Mountain Asia have experienced intense scientific scrutiny in the past decade due to their hydrological and societal importance. The explosion of freely-available satellite observations has greatly advanced our understanding of their thinning, motion, and overall mass losses, and it has become clear that they exhibit both local and regional variations due to debris cover, surging and climatic regime. However, our understanding of glacier accumulation and ablation rates is limited to a few individual sites, and altitudinal surface mass balance is essentially unknown across the vast region.</p><p>Here we combine recent assessments of ice thickness and surface velocity to correct observed glacier thinning rates for mass redistribution in a flowband framework to derive the first estimates of altitudinal glacier surface mass balance across the region. We first evaluate our results at the glacier scale with all available glaciological field measurements (27 glaciers), then analyze 4665 glaciers (we exclude surging and other anomalous glaciers) comprising 43% of area and 36% of mass for glaciers larger than 2 km<sup>2</sup> in the region. The surface mass balance results allow us to determine the equilibrium line altitude for each glacier for the period 2000-2016.  We then aggregate our altitudinal and hypsometric surface mass balance results to produce idealised profiles for distinct subregions, enabling us to consider the subregional heterogeneity of mass balance and the importance of debris-covered ice for the region’s overall ablation.</p><p>We find clear patterns of ELA variability across the region.  9% of glaciers accumulate mass over less than 10% of their area on average for the study period. These doomed  glaciers are concentrated in Nyainqentanglha, which also has the most negative mass balance of the subregions, whereas accumulation area ratios of 0.7-0.9 are common for glaciers in the neutral-balance Karakoram and Kunlun Shan. We find that surface debris extent is negatively correlated with ELA, explaining up to 1000 m of variability across the region and reflecting the importance of avalanching as a mass input for debris-covered glaciers at lower elevations. However, in contrast with studies of thinning rates alone, we find a clear melt reduction for low-elevation debris-covered glacier areas, consistent across regions, largely resolving the ‘debris cover anomaly’.  </p><p>Our results provide a comprehensive baseline for the health of the High Asian ice reservoirs in the early 21<sup>st</sup> Century. The estimates of altitudinal surface mass balance and ELAs will additionally enable novel strategies for the calibration of glacier and hydrological models. Finally, our results emphasize the potential of combined remote-sensing observations to understand the environmental factors and physical processes responsible for High Asia’s heterogeneous patterns of recent glacier evolution.</p>


2020 ◽  
Vol 12 (10) ◽  
pp. 1563 ◽  
Author(s):  
Rosie R. Bisset ◽  
Amaury Dehecq ◽  
Daniel N. Goldberg ◽  
Matthias Huss ◽  
Robert G. Bingham ◽  
...  

Meltwater from the glaciers in High Mountain Asia plays a critical role in water availability and food security in central and southern Asia. However, observations of glacier ablation and accumulation rates are limited in spatial and temporal scale due to the challenges that are associated with fieldwork at the remote, high-altitude settings of these glaciers. Here, using a remote-sensing-based mass-continuity approach, we compute regional-scale surface mass balance of glaciers in five key regions across High Mountain Asia. After accounting for the role of ice flow, we find distinctively different altitudinal surface-mass-balance gradients between heavily debris-covered and relatively debris-free areas. In the region surrounding Mount Everest, where debris coverage is the most extensive, our results show a reversed mean surface-mass-balance gradient of −0.21 ± 0.18 m w.e. a−1 (100 m)−1 on the low-elevation portions of glaciers, switching to a positive mean gradient of 1.21 ± 0.41 m w.e. a−1 (100 m)−1 above an average elevation of 5520 ± 50 m. Meanwhile, in West Nepal, where the debris coverage is minimal, we find a continuously positive mean gradient of 1.18 ± 0.40 m w.e. a−1 (100 m)−1. Equilibrium line altitude estimates, which are derived from our surface-mass-balance gradients, display a strong regional gradient, increasing from northwest (4490 ± 140 m) to southeast (5690 ± 130 m). Overall, our findings emphasise the importance of separating signals of surface mass balance and ice dynamics, in order to constrain better their contribution towards the ice thinning that is being observed across High Mountain Asia.


2016 ◽  
Vol 10 (4) ◽  
pp. 1845-1858 ◽  
Author(s):  
Christian Vincent ◽  
Patrick Wagnon ◽  
Joseph M. Shea ◽  
Walter W. Immerzeel ◽  
Philip Kraaijenbrink ◽  
...  

Abstract. Approximately 25 % of the glacierized area in the Everest region is covered by debris, yet the surface mass balance of debris-covered portions of these glaciers has not been measured directly. In this study, ground-based measurements of surface elevation and ice depth are combined with terrestrial photogrammetry, unmanned aerial vehicle (UAV) and satellite elevation models to derive the surface mass balance of the debris-covered tongue of Changri Nup Glacier, located in the Everest region. Over the debris-covered tongue, the mean elevation change between 2011 and 2015 is −0.93 m year−1 or −0.84 m water equivalent per year (w.e. a−1). The mean emergence velocity over this region, estimated from the total ice flux through a cross section immediately above the debris-covered zone, is +0.37 m w.e. a−1. The debris-covered portion of the glacier thus has an area-averaged mass balance of −1.21 ± 0.2 m w.e. a−1 between 5240 and 5525 m above sea level (m a.s.l.). Surface mass balances observed on nearby debris-free glaciers suggest that the ablation is strongly reduced (by ca. 1.8 m w.e. a−1) by the debris cover. The insulating effect of the debris cover has a larger effect on total mass loss than the enhanced ice ablation due to supraglacial ponds and exposed ice cliffs. This finding contradicts earlier geodetic studies and should be considered for modelling the future evolution of debris-covered glaciers.


2021 ◽  
Author(s):  
Cristina Passet ◽  
Lan Wang-Erlandsson ◽  
Yoshihide Wada ◽  
Agnes Pranindita ◽  
Agatha De Boer

<div><span>A<strong> </strong>substantial portion of groundwater abstracted from aquifers is used for irrigation and evaporated to the atmosphere, potentially contributing towards downwind precipitation. While the fate of evaporation fluxes from land have been analysed, the atmospheric pathways of evaporation originating from groundwater have not yet been globally quantified. This study analysed the geographical distribution, the seasonality and the magnitude of groundwater-dependent precipitation (Pgw) </span><span>at a global scale and for a selection of countries and river basins. The Eulerian moisture tracking WAM-2layers model was used to process meteorological and groundwater abstraction input data from 1980 to 2010.  Results show considerable contributions of groundwater to precipitation downwind of the most heavily irrigated areas, leading to net groundwater losses over these areas. Globally, 40% of the Pgw </span><span>precipitates directly in the oceans, and do not contribute to biomass production in terrestrial ecosystems. Some of the countries with the highest rates of groundwater abstraction (India, the USA, Pakistan and Iran), receive low volumes of Pgw </span><span>and are net losers of groundwater resources. The countries with the highest net gain of groundwater are China, Canada and Russia. At river basin scale, the Indus, Ganges and Mississippi basins are net losers of groundwater to downwind Pgw</span><span>, while the Yangtze, Tarim and Brahmaputra basins receive more Pgw </span><span>than their groundwater withdrawals. The share of precipitation that originates from groundwater varies considerably with seasons, and can be especially high when low local precipitation levels occur in combination with high upwind groundwater abstraction. Furthermore, precipitation dependence on </span><span>groundwater (ρgw)</span><span>, has steadily increased between 1980 to 2010 in all studied areas and globally. Our study suggests that the countries and basins with a high and increasing dependency on ρgw </span><span>to support their precipitation can be vulnerable to groundwater availability upwind.</span></div>


2018 ◽  
Author(s):  
Harry Zekollari ◽  
Matthias Huss ◽  
Daniel Farinotti

Abstract. Glaciers in the European Alps play an important role in the hydrological cycle, act as a source for hydroelectricity and have a large touristic importance. The future evolution of these glaciers is driven by surface mass balance and ice flow processes, which the latter is to date not included in regional glacier projections for the Alps. Here, we model the future evolution of glaciers in the European Alps with GloGEMflow, an extended version of the Global Glacier Evolution Model (GloGEM), in which both surface mass balance and ice flow are explicitly accounted for. The mass balance model is calibrated with glacier-specific geodetic mass balances, and forced with high-resolution regional climate model (RCM) simulations from the EURO-CORDEX ensemble. The evolution of the total glacier volume in the coming decades is relatively similar under the various representative concentrations pathways (RCP2.6, 4.5 and 8.5), with volume losses of about 47–52 % in 2050 with respect to 2017. We find that under RCP2.6, the ice loss in the second part of the 21st century is relatively limited and that about one-third (36.8 % ± 11.1 %) of the present-day (2017) ice volume will still present in 2100. Under a strong warming (RCP8.5) the future evolution of the glaciers is dictated by a substantial increase in surface melt, and glaciers are projected to largely disappear by 2100 (94.4 ± 4.4 % volume loss vs. 2017). For a given RCP, differences in future changes are mainly determined by the driving global climate model, rather than by the RCM that is coupled to it, and these differences are larger than those arising from various model parameters. We find that under a limited warming, the inclusion of ice dynamics reduces the projected mass loss and that this effect increases with the glacier elevation range, implying that the inclusion of ice dynamics is likely to be important for global glacier evolution projections.


2019 ◽  
Author(s):  
Leif S. Anderson ◽  
Robert S. Anderson ◽  
Pascal Buri ◽  
William H. Armstrong

Abstract. The mass balance of many Alaskan glaciers is perturbed by debris cover. Yet the effect of debris on glacier response to climate change in Alaska has largely been overlooked. In three companion papers we assess the role of debris, ice dynamics, and surface processes in thinning Kennicott Glacier. In Part A, we report in situ measurements from the glacier surface. In Part B, we develop a method to delineate ice cliffs using high-resolution imagery and produce distributed mass balance estimates. In Part C we explore feedbacks that contribute to glacier thinning. Here in Part A, we describe data collected in the summer of 2011. We measured debris thickness (109 locations), sub-debris melt (74), and ice cliff backwasting (60) data from the debris-covered tongue. We also measured air-temperature (3 locations) and internal-debris temperature (10). The mean debris thermal conductivity was 1.06 W (m C)−1, increasing non-linearly with debris thickness. Mean debris thicknesses increase toward the terminus and margin where surface velocities are low. Despite the relatively high air temperatures above thick debris, the melt-insulating effect of debris dominates. Sub-debris melt rates ranged from 6.5 cm d−1 where debris is thin to 1.25 cm d−1 where debris is thick near the terminus. Ice cliff backwasting rates varied from 3 to 14 cm d−1 with a mean of 7.1 cm d−1 and tended to increase as elevation declined and debris thickness increased. Ice cliff backwasting rates are similar to those measured on debris-covered glaciers in High Mountain Asia and the Alps.


2019 ◽  
Author(s):  
Quentin Dalaiden ◽  
Hugues Goosse ◽  
François Klein ◽  
Jan T. M. Lenaerts ◽  
Max Holloway ◽  
...  

Abstract. Improving our knowledge of the temporal and spatial variability of the Antarctic Ice Sheet (AIS) Surface Mass Balance (SMB) is crucial to reduce the uncertainties of past, present and future Antarctic contributions to sea level rise. Here, we show that Global Climate Models (GCMs) can reproduce the present-day (1979–2005) AIS SMB and the temporal variations over the last two centuries. An examination of the surface temperature–SMB relationship in model simulations demonstrates a strong link between the two. Reconstructions based on ice cores display a weaker relationship, indicating a model-data discrepancy that may be due to model biases or to the non-climatic noise present in the records. We find that, on the regional scale, the modelled temperature-SMB relationship is stronger than the relationship between δ18O-temperature. This suggests that SMB data can be used to reconstruct past surface temperatures. Using this finding, we assimilate isotope-enabled model SMB and δ18O output with ice-core observations, to generate a new surface temperature reconstruction. Although an independent evaluation of the skill is difficult because of the short observational time series, this new reconstruction outperforms the previous reconstructions for the continental-mean temperature that were based on δ18O alone with a linear correlation coefficient with the observed surface temperatures (1958–2010 CE) of 0.73. The improvement is largest for the East Antarctic region, where the uncertainties are particularly large. Finally, we provide a spatial SMB reconstruction of the AIS over the last two centuries showing 1) large variability in SMB trends at regional scale; and 2) a large SMB increase (0.82 Gt year−2) in West Antarctica over 1957–2000 while at the same time, East Antarctica has experienced a large SMB decrease (−3.3 Gt year−2), which is consistent with a recent reconstruction.


2021 ◽  
Author(s):  
James C. Ferguson ◽  
Tobias Bolch ◽  
Andreas Vieli

<p>The transient response of debris-covered glaciers to a changing climate is governed by nonlinear feedbacks between ice dynamics, debris transport, and glacier geometry and that act over a wide range of temporal and spatial scales. Current numerical models that are able to accurately represent the relevant physical processes are computationally expensive since they must track the debris transport not only at the glacier surface but also englacially. This makes such models difficult to use for simulations at the regional to global scale.</p><p>In order to address this challenge, we developed a fully coupled numerical model that solves both englacial debris transport and ice flow and includes the effect of debris cover on surface ablation. We use this model to evaluate different simplified approaches to modelling debris-covered glaciers. These simplifications include parametrized 1-D debris transport models, parametrized models of surface mass balance that include debris cover effects, and zero-dimensional models. We compare the model performances using a number of tests with an idealized synthetic glacier geometry and a range of forcings, thereby allowing for an evaluation of the relative merits of each approach. A key goal of this work is to provide guidance and tools for modelling studies involving debris cover at the regional to global scale.</p>


2021 ◽  
Author(s):  
Francesco Avanzi ◽  
Simone Gabellani ◽  
Edoardo Cremonese ◽  
Umberto Morra di Cella ◽  
Matthias Huss

<p>Glacier mass balance is an essential component of the water budget of high-elevation and high-latitude regions, and yet this process is rather oversimplified in most hydrological models. This oversimplification is particularly relevant when it comes to representing two mechanisms: ice flow dynamics and melt beneath a supraglacial debris cover. In 2010, Huss et al. proposed a parsimonious approach to account for  glacier dynamics in hydrological models without solving complex equations of three-dimensional ice flow, the so-called delta-h parametrization. On the other hand, accounting for melt of debris-covered ice is still challenging as  estimates of debris thickness are rare. </p><p>Here, we leveraged a distributed dataset of glacier-thickness change to derive a glacier-specific delta-h parametrization for 54 glaciers across the Aosta Valley (Italy), as well as  develop a novel approach for modeling melt beneath supraglacial debris based on residuals between locally observed change in thickness and that expected by regional elevation gradients. This approach does not require any on-the-ground data on debris cover, and as such it is particularly suited for ungauged regions where remote sensing is the only, feasible source of information for modeling. </p><p>We found an expected, significant variability in both the delta-h parametrization and residuals over debris-covered ice across glaciers, with somewhat steeper orographic gradients in the former compared to the curves originally proposed by Huss et al. for Swiss glaciers. At a regional scale, the glacier mass balance showed a clear transition between a regime dominated by active glacier flow above 2,300 m ASL and a debris-dominated regime below this elevation threshold, which makes accounting for melt in the debris-covered area essential to correctly capture the future fate of low-elevation glaciers. Implementing the delta-h parametrization and our proposed approach to melt beneath supraglacial debris into S3M, a distributed cryospheric model, yielded an improved realism in estimates of future changes in glacier geometry  compared to assuming non-dynamic downwasting.</p>


Sign in / Sign up

Export Citation Format

Share Document