scholarly journals Investigation of a Paternal-Mediated Preeclampsia-Like Pregnancy Phenotype Mouse Model

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Lauren Burnette ◽  
Mary Gemmel ◽  
Marcia Gallaher ◽  
Robert Powers

Preeclampsia, a pregnancy specific syndrome characterized by new onset hypertension and proteinuria, is a leading cause of maternal and neonatal morbidity and mortality. While no animal model perfectly mimics the human syndrome, breeding C1q-/- (male) to C57 (female) mice results in a preeclampsia-like pregnancy including pregnancy-specific hypertension, vascular dysfunction and altering placental phenotype. As the placental genotype is primarily paternally driven, lack of paternal C1q is likely driving this preeclampsia-like phenotype. However, more work is needed to investigate whether a lack of maternal C1q also contributes to this preeclampsia-like phenotype. The aim of this study was to investigate the pregnancy phenotype of genetic control (C1q-/- female bred to C57 male) mice. Blood pressure was monitored during pregnancy and vascular function assessed during late pregnancy (gestation day 17.5) in genetic control females. These data were compared to similar data obtained from control (C57 male bred to C57 female) and preeclampsia-like (C1q-/- male bred to C57 female) pregnant mice. Genetic control blood pressure and vascular function data were similar to that of the control pregnancy group, indicating no significant effect of maternal C1q deficiency on the “preeclampsia-like” pregnancy phenotype. As understanding preeclampsia and its effect on women’s health is critical, the work presented is important to confirm the C1q-/- x C57 mouse model as a useful model for studying this syndrome further.

Author(s):  
Mary Gemmel ◽  
Elizabeth F Sutton ◽  
Judith Brands ◽  
Lauren Burnette ◽  
Marcia J Gallaher ◽  
...  

Preeclampsia is a spontaneously occurring pregnancy complication diagnosed by new onset hypertension and end-organ dysfunction with or without proteinuria. This pregnancy-specific syndrome contributes to maternal morbidity and mortality and can have detrimental effects on fetal outcome. Preeclampsia is also linked to increased risk of maternal cardiovascular disease throughout life. Despite intense investigation of this disorder, few treatment options are available. The aim of this study was to investigate the potential therapeutic effects of maternal L-citrulline supplementation on pregnancy-specific vascular dysfunction in the ♀ C57BL/6J x ♂ C57BL/6J C1q-/- preeclampsia-like mouse model. L-citrulline is a non-essential amino acid that is converted to L-arginine to promote smooth muscle and blood vessel relaxation and improve nitric oxide (NO) mediated vascular function. To model a preeclampsia-like pregnancy, female C57BL/6J mice were mated to C1q-/- male mice, and a subset of dams were supplemented with L-citrulline throughout pregnancy. Blood pressure, systemic vascular glycocalyx, and ex-vivo vascular function were investigated in late pregnancy, and postpartum at 6 and 10 months of age. Main findings show that L-citrulline reduced blood pressure, increased vascular glycocalyx volume and rescued ex-vivo vascular function at gestation day 17.5 in this preeclampsia-like model. The vascular benefit of L-citrulline also extended postpartum, with improved vascular function and glycocalyx measures at 6 and 10 months of age. L-citrulline mediated vascular improvements appear, in part, attributable to NO pathway signaling. Taken together, L-citrulline supplementation during pregnancy appears to have beneficial effects on maternal vascular health which may have translational implications for improved maternal cardiovascular health.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Jessica L Faulkner ◽  
Derrian Wright ◽  
Simone Kennard ◽  
Galina Antonova ◽  
Iris Z Jaffe ◽  
...  

Placental ischemia, an initiating event of preeclampsia (PE), increases plasma leptin levels. We recently developed a model of midgestation (gestation day (GD)11-18) leptin infusion mimicking the midgestation rise in leptin levels of PE patients. Our previous work demonstrates that deletion of endothelial mineralocorticoid receptors (ECMR) improves markers of vascular dysfunction in leptin-infused female mice. We hypothesized vascular function improvement with ECMR deletion ablates hypertension and fetal growth restriction in pregnant leptin-infused mice. Pregnant ECMR +/+ (WT) and ECMR -/- (KO) mice were infused with vehicle or leptin by osmotic pump (lep, 0.9mg/kg/day, s.c.) on GD11-18 while implanted with radiotelemeters for conscious blood pressure (BP) measurement and wire myography of thoracic aorta and 2 nd order mesenteric arteries at GD18 (*=P<0.05). Leptin infusion did not decrease maternal weight in any groups. Leptin decreased pup weight (0.86±0.04g WT vs 0.52±0.11 WT+lep*) and placental efficiency (pup/placenta ratio) (9.7±0.7 WT vs 7.9±0.6 WT+lep*) in WT pregnant mice. ECMR deletion prevented leptin-mediated decreases in pup weight (0.91±0.06g KO vs 1.0±0.07 KO+lep) and placental efficiency (9.6±0.5 KO vs 9.4±1.2 KO+lep). Mean arterial pressure (BP) increased in leptin-infused WT (102±3mmHg WT vs 120±12 WT+lep*), but not KO (107±2 KO vs 106±8 KO+lep), mice from GD11-18. Leptin infusion reduced acetylcholine-mediated relaxation in both aorta and mesenteric arteries of WT* and constriction to KCl in mesenteric arteries in WT*, but not KO, pregnant mice (2-way ANOVA, repeated measures). Leptin increased plasma endothelin-1 (ET-1, 1.1±0.3 pg/ml WT vs 4.4±1.8 WT+lep*), placental mRNA expression of prepro-ET-1 (1.9±0.3-fold change from WT*) and ET-1 converting enzyme-1 (1.6±0.3-fold change from WT*) in pregnant WT mice. Leptin infusion also increased adrenal aldosterone-synthase protein (1.4±0.4 WT ratio/β actin vs 3.2±0.3 WT+lep*) and angiotensin II type 1 receptor b (3.5±0.8-fold change from WT*) mRNA in pregnant mice. Collectively, these data indicate that leptin infusion induces hypertension and fetal growth restriction in pregnant mice due to vascular dysfunction and increased ECMR activation in pregnant mice.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Huey Wen Lee ◽  
Melita Brdar ◽  
Robert Widdop ◽  
Anthony Dear ◽  
Tracey Gaspari

Glucagon-like peptide-1 (GLP-1) based therapies are used to treat type II diabetes via increasing insulin secretion and inhibiting glucagon production. Recent evidence suggests that activating the GLP-1 receptor may also mediate direct vaso-protective effects. Therefore the objective of the study was to determine whether GLP-1R stimulation conferred cardio- and vaso-protection in a non-diabetic setting using the angiotensin (Ang) II infusion model of hypertension and cardiovascular dysfunction. Male C57Bl/6J mice (4-6 months) were assigned to one of the following 4 week treatment protocols: 1) vehicle (saline), 2) Ang II (800ng/kg/day), 3) Ang II + liraglutide (30μg/kg/day), 4) Ang II + liraglutide (300μg/kg/day). All treatments were administered via osmotic mini-pumps (s.c). After 4 weeks the effect of liraglutide treatment on blood pressure, vascular function and cardiac remodelling was examined. Liraglutide (both doses) attenuated Ang II-induced increase in systolic blood pressure (Ang II: 175.3 ± 8.6mmHg vs Ang II+Lirag (30) 150.2 ± 6.4 mmHg or Ang II+Lirag (300): 145.4 ± 6.9 mmHg) without affecting blood glucose levels. Liraglutide (both doses) completely prevented Ang II-induced endothelial dysfunction (% maximum relaxation: Ang II=50.7 ± 7.8%; Ang II+Lirag (30)=82.7 ± 5.8; Ang II+Lirag (300)=81.5 ± 6.1%). In the heart, liraglutide prevented Ang II-induced cardiomyocyte hypertrophy (n=7-10; p<0.05) and reduced collagen deposition (% collagen expression: Ang II=4.4 ± 0.5 vs Ang II+Lirag(300)=2.9 ± 0.3; n=7-9; p<0.01). This anti-fibrotic effect was attributed to reduced fibroblast/myofibroblast expression as well as decreased inflammation with reduced NFκB and MCP-1 expression and decreased oxidative stress with a significant reduction in superoxide production using high dose of liraglutide. Overall, stimulation of GLP-1R in a non-diabetic setting protected against Ang II-mediated cardiac hypertrophy, cardiac fibrosis and vascular dysfunction, indicating potential for use of GLP-1 based therapies in treatment of cardiovascular disease independent of diabetes.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Pimonrat Ketsawatsomkron ◽  
Deborah R Davis ◽  
Aline M Hilzendeger ◽  
Justin L Grobe ◽  
Curt D Sigmund

PPARG, a ligand-activated transcription factor plays a critical role in the regulation of blood pressure and vascular function. We hypothesized that smooth muscle cell (SMC) PPARG protects against hypertension (HT) and resistance vessel dysfunction. Transgenic mice expressing dominant negative PPARG (S-P467L) in SMC or non-transgenic controls (NT) were implanted with DOCA pellet and allowed ad libitum access to 0.15 M NaCl for 21 days in addition to regular chow and water. Blood pressure was monitored by telemetry and mesenteric arterial (MA) function was assessed by pressurized myograph. At baseline, 24-hour mean arterial pressure (MAP) was similar between NT and S-P467L mice, while the transgenic mice were tachycardic. DOCA-salt increased MAP to a much greater degree in S-P467L mice (Δ MAP; S-P467L: +34.2±6.0, NT: +13.3±5.7, p<0.05 vs NT). Heart rate was similarly decreased in both groups after DOCA-salt. Vasoconstriction to KCl, phenylephrine and endothelin-1 did not differ in MA from DOCA-salt treated NT and S-P467L, while the response to vasopressin was significantly reduced in S-P467L after DOCA-salt (% constriction at 10-8 M, S-P467L: 31.6±5.6, NT: 46.7±3.8, p<0.05 vs NT). Urinary copeptin, a surrogate marker for arginine vasopressin was similar in both groups regardless of treatment. Vasorelaxation to acetylcholine was slightly impaired in S-P467L MA compared to NT at baseline whereas this effect was further exaggerated after DOCA-salt (% relaxation at 10-5 M, S-P467L: 56.1±8.3, NT: 79.4±5.6, p<0.05 vs NT). Vascular morphology at luminal pressure of 75 mmHg showed a significant increase in wall thickness (S-P467L: 18.7±0.8, NT: 16.0±0.4, p<0.05 vs NT) and % media/lumen (S-P467L: 8.4±0.3, NT: 7.1±0.2, p<0.05 vs NT) in S-P467L MA after DOCA-salt. Expression of tissue inhibitor of metalloproteinases (TIMP)-4 and regulator of G-protein signaling (RGS)-5 transcript were 2- and 3.5-fold increased, respectively, in MA of NT with DOCA-salt compared to NT baseline. However, this induction was markedly blunted in S-P467L MA. We conclude that interference with PPARG function in SMC leads to altered gene expression crucial for normal vascular homeostasis, thereby sensitizing the mice to the effects of DOCA-salt induced HT and vascular dysfunction.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Sarah Johnson ◽  
Nicole Litwin ◽  
Hannah Van Ark ◽  
Shannon Hartley ◽  
Emily Fischer ◽  
...  

Abstract Objectives The gut microbiota is emerging as an important regulator of cardiovascular health. Indeed, gut dysbiosis is increasingly being linked to the development of cardiovascular disease (CVD). Aging and obesity are associated with the development of CVD largely due to the development of vascular dysfunction, namely endothelial dysfunction and arterial stiffness. The objective of this study was to examine the relationship between the gut microbiota, blood pressure, and vascular function in aging overweight and obese individuals. Methods This cross-sectional study included fifteen overweight and obese (mean body mass index, BMI: 29.5; range: 25.8–37.0) middle-aged/older men and postmenopausal women (mean age: 53; range: 42–64 years). Blood pressure, arterial stiffness (augmentation index, AIx, and aortic pulse wave velocity, aPWV), and endothelial function (reactive hyperemia index, RHI) were assessed. Stool samples were collected for gut microbiota analysis using 16S ribosomal RNA sequencing. Principal coordinates analysis and Pearson's correlations were performed to evaluate the relationship between the gut microbiota and measures of vascular function and blood pressure. Results Global gut microbiota phenotypes clustered most strongly by aPWV (groups separated by median value) as visualized by Non-Metric Dimensional Scaling plot of Bray-Curtis Distances (stress = 0.09; P = 0.07). Several bacterial taxa correlated with vascular parameters. For example, Bifidobacterium longum (r = 0.80, P < 0.001) and Akkermansia muciniphila (r = 0.56, P = 0.047) were positively correlated with RHI. Bifdobacterium bifidum (r = −0.61, P = 0.02) and Oxalobacter formigenes (r = −0.62, P = 0.02) were negatively correlated with systolic blood pressure. Interestingly, there was no significant clustering by BMI groupings (overweight vs. obese) or correlations between BMI and specific taxa. Conclusions These preliminary data suggest that the gut microbiota is linked to vascular dysfunction and increased blood pressure in aging overweight and obese individuals independent of BMI. Further data collection and analysis are currently underway to explore these relationships in a larger human cohort, and to explore underlying mechanisms through transferring of vascular phenotypes in humans to germ-free mice through microbiota transplantation. Funding Sources NIFA, USDA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lale A. Ertuglu ◽  
Fernando Elijovich ◽  
Cheryl L. Laffer ◽  
Annet Kirabo

Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality that is seen in both hypertensive and normotensive populations. Insulin resistance (IR) strongly correlates with SSBP and affects nearly 50% of salt sensitive people. While the precise mechanism by which IR and SSBP relate remains elusive, several common pathways are involved in the genesis of both processes, including vascular dysfunction and immune activation. Vascular dysfunction associated with insulin resistance is characterized by loss of nitric oxide (NO)-mediated vasodilation and heightened endothelin-1 induced vasoconstriction, as well as capillary rarefaction. It manifests with increased blood pressure (BP) in salt sensitive murine models. Another common denominator in the pathogenesis of insulin resistance, hypertension, and salt sensitivity (SS) is immune activation involving pro-inflammatory cytokines like tumor necrosis factor (TNF)-α, IL-1β, and IL-6. In the last decade, a new understanding of interstitial sodium storage in tissues such as skin and muscle has revolutionized traditional concepts of body sodium handling and pathogenesis of SS. We have shown that interstitial Na+ can trigger a T cell mediated inflammatory response through formation of isolevuglandin protein adducts in antigen presenting cells (APCs), and that this response is implicated in salt sensitive hypertension. The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that modulates both insulin sensitivity and BP. PPARγ agonists increase insulin sensitivity and ameliorate salt sensitivity, whereas deficiency of PPARγ results in severe insulin resistance and hypertension. These findings suggest that PPARγ plays a role in the common pathogenesis of insulin sensitivity and salt sensitivity, perhaps via effects on the immune system and vascular function. The goal of this review is to discuss those mechanisms that may play a role in both SSBP and in insulin resistance.


2017 ◽  
Vol 234 (1) ◽  
pp. T67-T82 ◽  
Author(s):  
Jennifer J DuPont ◽  
Iris Z Jaffe

Since the mineralocorticoid receptor (MR) was cloned 30 years ago, it has become clear that MR is expressed in extra-renal tissues, including the cardiovascular system, where it is expressed in all cells of the vasculature. Understanding the role of MR in the vasculature has been of particular interest as clinical trials show that MR antagonism improves cardiovascular outcomes out of proportion to changes in blood pressure. The last 30 years of research have demonstrated that MR is a functional hormone-activated transcription factor in vascular smooth muscle cells and endothelial cells. This review summarizes advances in our understanding of the role of vascular MR in regulating blood pressure and vascular function, and its contribution to vascular disease. Specifically, vascular MR contributes directly to blood pressure control and to vascular dysfunction and remodeling in response to hypertension, obesity and vascular injury. The literature is summarized with respect to the role of vascular MR in conditions including: pulmonary hypertension; cerebral vascular remodeling and stroke; vascular inflammation, atherosclerosis and myocardial infarction; acute kidney injury; and vascular pathology in the eye. Considerations regarding the impact of age and sex on the function of vascular MR are also described. Further investigation of the precise molecular mechanisms by which MR contributes to these processes will aid in the identification of novel therapeutic targets to reduce cardiovascular disease (CVD)-related morbidity and mortality.


2006 ◽  
Vol 24 (7) ◽  
pp. 1365-1373 ◽  
Author(s):  
Danesh Javeshghani ◽  
M Ram Sairam ◽  
Mario Fritsch Neves ◽  
Ernesto L Schiffrin ◽  
Rhian M Touyz

2019 ◽  
Vol 20 (17) ◽  
pp. 4261 ◽  
Author(s):  
Johannes Wild ◽  
Rebecca Schüler ◽  
Tanja Knopp ◽  
Michael Molitor ◽  
Sabine Kossmann ◽  
...  

Background: Psoriasis is hallmarked by vascular dysfunction, arterial hypertension, and an increased risk for cardiovascular diseases. We have shown recently that skin-driven interleukin (IL)-17A expression promotes psoriasis-like disease in mice, and this is associated with vascular inflammation, vascular dysfunction, and hypertension. As an intensive risk-factor reduction is recommended for psoriasis patients, we aimed to elucidate the impact of the angiotensin II receptor type 1 (AT1) antagonist telmisartan in a mouse model of severe psoriasis-like skin disease. Methods and Results: Elevated blood pressure measured by tail-cuff plethysmography in mice with keratinocyte-specific IL-17A overexpression (K14-IL-17Aind/+ mice) was significantly reduced in response to telmisartan. Importantly, vascular dysfunction, as assessed by isometric tension studies of isolated aortic rings, vascular inflammation measured by flow cytometry analysis of CD45+CD11b+ immune cells, as well as the increased peripheral oxidative stress levels assessed by L-012-enhanced chemiluminescence were not attenuated by telmisartan treatment of K14-IL-17Aind/+ mice, nor was the persisting skin inflammation. Conclusion: We provide first evidence for an effective antihypertensive treatment in experimental psoriasis by AT1 blockade, but without any impact on vascular inflammation and dysfunction in our mouse model of severe psoriasis-like skin disease. This suggests that vascular function and inflammation in psoriasis might not be attenuated as long as skin inflammation persists.


2019 ◽  
Author(s):  
Mateus R. Amorim ◽  
Júnia L. de Deus ◽  
Camila A. Pereira ◽  
Luiz E. V. da Silva ◽  
Gabriela S. Borges ◽  
...  

ABSTRACTBeyond the regulation of cardiovascular function, baroreceptor afferents play polymodal roles. We hypothesized that baroreceptor denervation affects lipopolysaccharide (LPS)-induced systemic inflammation (SI) and hemodynamic collapse in conscious rats, and that these parameters are interconnected. We combine: a) hemodynamic and thermoregulatory recordings after LPS administration at a septic-like dose b) analysis of the cardiovascular complexity, c) evaluation of vascular function in mesenteric resistance vessels, and d) measurements of inflammatory cytokines (plasma and spleen). LPS-induced drop in blood pressure was higher in sino-aortic denervated (SAD) rats. LPS-induced hemodynamic collapse was associated with SAD-dependent autonomic disbalance. LPS-induced vascular dysfunction was not affected by SAD. Surprisingly, SAD blunted LPS-induced surges of plasma and spleen cytokines. These data indicate that sino-aortic afferents are key to alleviate LPS-induced cardiovascular collapse, affecting the autonomic cardiovascular control, without affecting resistance blood vessels. Moreover, baroreflex modulation of the LPS-induced SI and hemodynamic collapse seem not to be interconnected.


Sign in / Sign up

Export Citation Format

Share Document