scholarly journals Swell and Consolidation Characteristics of Fiber Reinforced Cohesive Soil

2018 ◽  
Vol 7 (1) ◽  
pp. 33-36
Author(s):  
Rajeena . ◽  
S. P. Jeyapriya .

Naturally occurring expansive clays show detrimental changes in volume when subjected to variation in water content. It leads to significant damages in foundations that are seated on these materials used for the construction in pavement, bridges especially in light weight buildings. The improvement could be in terms of reducing the swelling and differential settlement or increasing the shear strength of clayey soil. Reinforcing soil using fiber is one of the ground improvement techniques in which fibers are mixed randomly with the soil, in similar fashion to mixing with lime, cement or other additives. It eliminates the potential weak planes and maintains the strength isotropy by random reinforcement. The main objective of this study is to investigate the effect of synthetic polypropylene fibers on the swelling and consolidation characteristics of clay soil. The parameters considered for the study include the swelling pressure, swell potential and consolidation characteristics. Polypropylene fiber with aspect ratio (l/d) 12 is varied at 0%, 0.1%, 0.25%, 0.50% and 0.75% by dry weight of the soil is used as reinforcement. The swell potential(S%) and the swelling pressure(P) decreased with the addition of fiber. From the experimental results, 0.5% of polypropylene fiber is considered to be optimum. The results also revealed that the rate of heave formation is very less compared to that of unreinforced soil. From the consolidation test, it was observed that compression index, co efficient of compressibility and co efficient of volume change are 0.22, 0.8 mm2/N and 0.48mm2/N at the optimum fiber percentage.

2000 ◽  
Vol 1736 (1) ◽  
pp. 134-140 ◽  
Author(s):  
Anand J. Puppala ◽  
Chisha Musenda

The results of a research study to investigate the influence of discrete and randomly oriented polypropylene fiber reinforcement on expansive soil stabilization are presented. Two expansive soils were used as control soils in the testing program. Two types of fibers and four fiber dosages (0,0.3,0.6, and 0.9 percent by dry weight of soil) were considered. Both raw and fiber-reinforced clayey samples were prepared and subjected to unconfined compressive strength (UCS), volumetric shrinkage, three-dimensional free swell, and swell pressure tests. Test results were statistically analyzed to investigate the effectiveness of fiber reinforcement on strength, swell, and shrinkage characteristics of expansive clays. Results indicated that the fiber reinforcement enhanced the UCS of the soil and reduced both volumetric shrinkage strains and swell pressures of the expansive clays. The fiber treatment also increased the free swell potential of the soils. Practical implications of the findings and future research directions are discussed.


2020 ◽  
Vol 38 (6A) ◽  
pp. 801-812
Author(s):  
Mohammed A. Al-Neami ◽  
Falah H. Rahil ◽  
Yaseen H. Al-Ani

For any land-based structure, the foundation is very important and has to be strong to support the entire structure. In order for the foundation to be strong, the soil underneath it plays a very critical role. Some projects where the soil compacted by modifying energy is insufficient to achieve the required results, so the additives as a kind of installation and reinforcement are used to achieve the required improvement. This study introduces an attempt to improve cohesive soil by using Polypropylene Fiber instead of conventional kinds used in soil stabilization. Three different percentages (0.25%, 0.5%, and 0.75% by dry weight of soil) and lengths (6, 12, and 18) mm of fiber are mixed with cohesive as a trial to enhance some properties of clay. The results of soil samples prepared at a dry density at three different water conditions (optimum water content, dry side, and wet side) showed that the increase of the percentage and length of polypropylene fiber causes a reduction in the maximum dry density of soils. Soil cohesion increases with the increase of PPF up to 0.5% then decreased. The length of Polypropylene fiber has a great effect on the cohesion of soil and adding 0.5% Polypropylene fibers with a length of 18mm to the soils consider the optimum mix for design purposes to improve the soil. Finally, the soil reinforced by PPF exhibits a reduction in the values of the compression ratio (CR) and accelerates the consolidation of the soil.


Author(s):  
Nitin Tiwari ◽  
Neelima Satyam

Expansive soil shows dual swell-shrink which is not suitable for the construction. Several mitigating techniques exist to counteract the problem promulgate by expansive clayey soils. This paper explored the penitential mecho-chemical reinforcement of expansive clayey soil to mitigate the effect of upward swelling pressure and heave. The polypropylene fiber is randomly distributed in the soil for mechanical stabilization, and the industrial residual silica fume is used as a chemical stabilizer. The experimental analysis is made in three phases which involved the tests on mechanical reinforced expansive soil using randomly distributed polypropylene fibers with different percentages (0.25%, 0.50%, and 1.00%), and 12mm length. The second phase of experiments carried out on chemical stabilized expansive soil with different percentages (2%, 4% and 8%) of silica and next phase of the experimental focused in the combination of mecho-chemical stabilization of the expansive soil with different combination of silica (i.e., 2%, 4% and 8%) and polypropylene fibers (i.e., 0.25%, 0.50% and 1.00%). Maximum dry density (MDD), optimum moisture content (OMC), liquid limit (LL), plastic limit (PL), plastic index (PI) grain size, and constant volume swelling pressure test were performed on unreinforced and reinforced expansive soil to investigate the effect of polypropylene fiber and silica fume on the engineering properties of expansive clayey soil. The experimental results illustrate that the inclusion of polypropylene fiber has a significant effect on the upward swelling pressure and expansion property of expansive soil. The reduction in the upward swelling pressure and expansion is a function of fiber content. These results also indicated that the use of silica fume caused a reduction in upward swelling potential, and its effect was considerably more than the influence of fiber.


Geosciences ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 377 ◽  
Author(s):  
Nitin Tiwari ◽  
Neelima Satyam

Expansive soil shows dual swell–shrink which is not suitable for construction. Several mitigating techniques exist to counteract the problem promulgated by expansive clayey soils. This paper explored the potential mecho-chemical reinforcement of expansive clayey soil to mitigate the effect of upward swelling pressure and heave. The polypropylene fiber is randomly distributed in the soil for mechanical stabilization, and the industrial residual silica fume is used as a chemical stabilizer. The experimental analysis was made in three phases which involved tests on mechanically-reinforced expansive soil, using randomly distributed polypropylene fibers with different percentages (0.25%, 0.50%, and 1.00%), and which were 12 mm length. The second phase of experiments was carried out on chemical stabilized expansive soil with different percentages (2%, 4%, and 8%) of silica, and the next phase of the experiment focused on the combination of mecho-chemical stabilization of the expansive soil with different combinations of silica (i.e., 2%, 4%, and 8%) and polypropylene fibers (i.e., 0.25%, 0.50%, and 1.00%). Maximum dry density (MDD), optimum moisture content (OMC), liquid limit (LL), plastic limit (PL), plastic index (PI), grain size, and constant volume swelling pressure tests were performed on unreinforced and reinforced expansive soil, to investigate the effects of polypropylene fiber and silica fume on the engineering properties of expansive clayey soil. The experimental results illustrate that the inclusion of polypropylene fiber has a significant effect on the upward swelling pressure and expansion property of expansive soil. The reduction in the upward swelling pressure and expansion is a function of fiber content. These results also indicated that the use of silica fume caused a reduction in upward swelling potential, and its effect was considerably more than the influence of fiber.


2018 ◽  
Vol 162 ◽  
pp. 01020 ◽  
Author(s):  
Nahla Salim ◽  
Kawther Al-Soudany ◽  
Nora Jajjawi

All structures built on soft soil may experience uncontrollable settlement and critical bearing capacity. This may not meet the design requirements for the geotechnical engineer. Soil stabilization is the change of these undesirable properties in order to meet the requirements. Traditional methods of stabilizing or through in-situ ground improvement such as compaction or replacement technique is usually costly. Now a safe and economic disposal of industrial wastes and development of economically feasible ground improvement techniques are the important challenges being faced by the engineering community. This work focuses on improving the soft soil brought from Baghdad by utilizing the local waste material for stabilization of soil, such as by using “Nylon carry bag’s by product” with the different percentage and corresponding to 1 %, 3% and 5% (the portion of stabilizer matters to soil net weight) of dried soil. The results indicated that as Nylon’s fiber content increases, the liquid limit decreases while the plastic limit increases, so the plasticity index decreases. Furthermore, the maximum dry density decreases while, the optimum moisture content increases as the Nylon’s fiber percentage increases. The compression index (decreases as the Nylon’s fiber increases and provides a maximum of 43% reduction by adding 5% nylon waste material. In addition, the results indicated that, the undrained shear strength increases as the nylon fiber increases.


In geotechnical engineering practice, expansive clay is widely encountered. It poses to be a serious problem especially in metropolitan areas by virtue of its low strength and high compressibility. Further, these soils undergo significant change in volume as a consequence of variation in the moisture content. Soil stabilisation is one such technique practiced to improve the shear strength and to control volume change in expansive clays. Among various stabilisation techniques, Lime has been found to be an effective stabilizer, which appreciably alters the properties of expansive clay. Further, the reaction will be very effective on the usage of nano size particles in the stabilisation of expansive clay. At the first step, the effect of lime stabilisation on geotechnical properties such as grain size distribution, index properties, compaction characteristics, differential free swell and unconfined compressive strength of expansive clay was studied by varying percentages of lime. At the second step, the effect of nano- lime on the properties of optimum soil-lime mixture was investigated. The percentage of nano- lime is varied from 0.25- 1.0% by dry weight of the soil. The measured results show that the use of nano- lime in expansive clay significantly improves its strength and reduces swell behaviour resulting in reduced pavement thickness.


2018 ◽  
Vol 13 (2) ◽  
pp. 87-93
Author(s):  
Muhammet Vefa Akpinar ◽  
Erhan Burak Pancar ◽  
Eren Şengül ◽  
Hakan Aslan

In this study effectiveness of lime stabilization and geocell reinforcement techniques of roads was investigated for low bearing capacity subgrades. For this purpose, a large-scale plate load test was designed and used. Clayey soil with high moisture content was reinforced with different percentages of hydrated lime (5%, 10%, 15% dry weight of the soil). The deflection and stress results indicated that lime stabilization or geocell reinforcement alone did not significantly increase subgrade reaction coefficient and bearing capacity values. Promising results were obtained on stabilization of weak subgrade when both techniques were used together. It was determined that cellular reinforcement increased the reaction modulus coefficient value and bearing capacity of the subgrade soil by more than 15% compared to the lime stabilization.


2018 ◽  
Vol 7 (4) ◽  
pp. 81
Author(s):  
Abdulrahman Aldaood ◽  
Amina Khalil ◽  
Ibrahim Alkiki ◽  
Madyan Alsaffar

This research work study the influence of cyclic wetting and drying on free swell potential of untreated and lime treated expansive clayey soils. Such a study is required to understand the behavior of these soils during wet-dry cycles. Two expansive soils (a polwhite bentonite and a kaolinite) with different plasticity indexes were used in this study. The soil samples were treated with different lime content in the order of (3, 5 and 7% by the dry weight of soil). The lime treated soil samples were cured at 20ºC for 28 and 180 days. The untreated and lime treated soil samples were subjected to four wet-dry cycles. Free swell potential and cracks propagation were studied during lime addition and wet-dry cycles. Results showed that, the free swell potential of untreated soil samples; in general; decreased with increasing wet-dry cycles, and all of the soil samples reached equilibrium after the second cycle. While the cracks propagation increased with these cycles, especially of bentonite soil samples. Larger cracks propagation has been observed in the bentonite soil samples. Lime addition enhanced the free swell potential values of  the two expansive soils and there was a drastic decrease in free swelling potential and cracks propagation of these soils. The beneficial effect of lime treatment to control the swelling values was partly lost by the first wet–dry cycles, and the free swell potential increased at the subsequent cycles.


Author(s):  
Mahdi O. Karkush ◽  
Shahad D. Ali

In this research, the effectsof coppersulfate contamination on the chemical, physical and mechanical properties of cohesive soil have been studied and compared with the properties of intact soil. Soil sampleswere obtained from Al-Ahdab oil field in Wasit governorate, located in the east of Iraq. In the laboratory, the soil specimens were contaminated artificiallywith three quantities of copper sulfate) CuSO4.5H2O) (100, 200 and 400) gm. The contaminantwas dissolved in 10 liters of distilled water and then added to the intact soil. The intact soil samplekept soaked with the contaminantfor 30 days. Several tests were conducted onthe soil samples (intact and contaminated) to measure the effects of copper sulfate on the geotechnical properties of clayey soil. The results of tests showed significant effectsfor copper on the studied soil properties. The copper sulfate causesdecreasing the percentage of fine particles in the soil, Atterberg s limits, permeability and optimum water content. Inaddition, the copper sulfate causes increasing thespecific gravity andmaximum dry density of soil. The shear strength parameters of soil are measured by using direct shear test, unconfined compression test and unconsolidated undrained triaxial test are decreased with increasing the concentration of copper sulfate in soil. Also, its noted increasing the initial void ratio, the compression index and recompression index with increasing concentration of contaminant in soil.


Sign in / Sign up

Export Citation Format

Share Document