scholarly journals Effect of Resistance Exercise on Acquired Immunocytes in Cancer Survivors: A Pilot Study

2021 ◽  
Vol 25 (Suppl 2) ◽  
pp. S96-105
Author(s):  
Jong-Kyun Lee ◽  
Yong-Seok Jee

Purpose: The purpose of this study was to elucidate the effect of resistance exercise on skeletal muscle mass-related fitness and acquired immune cell function in ovarian cancer survivors.Methods: Twelve ovarian cancer survivors aged 33–61 years participated voluntarily in this study and were divided into control group (CG, n=6) and exercise group (EG, n=6). They underwent removal of ovarian cancer and received regular care for over one year. Resistance exercise was used as the intervention program conducted 4 days a week for 12 weeks. Skeletal muscle mass, muscle strength, and endurance were assessed at baseline and at week 12. Other dependent variables included adaptive immunocytes related to helper T (Th) cells and immunosuppressors (CD4+ and CD8+).Results: After the intervention, skeletal muscle mass showed positive changes in EG com-pared to CG, although not significantly different. Muscle strength and endurance significantly increased in EG, while there was no significant change in CG. Th1, Th2, and Th1/Th2 ratio were significantly different between both groups. CD4+CD25+T cells and CD4+PD-1+T cells of EG were lower than those of CG. CD8+PD-1+T cells and CD8+TIGIT+T of EG were lower than those of CG. These results can be interpreted as the improved sensitivity of CD4+ and CD8+, which helps the secretion of myokines and cytokines, when cytotoxic substances are injected into the human body.Conclusions: This study suggests that resistance training improves upon desirable changes in adaptive immune cell responses in ovarian cancer survivors by maintaining skeletal muscle mass while developing strength and endurance.

Author(s):  
Abeline Kapuczinski ◽  
Muhammad S. Soyfoo ◽  
Sandra De Breucker ◽  
Joëlle Margaux

AbstractFibromyalgia is a chronic disorder characterized by persistent widespread musculoskeletal pain. Patients with fibromyalgia have reduced physical activity and increased sedentary rate. The age-associated reduction of skeletal muscle mass and function is called sarcopenia. The European Working Group on Sarcopenia in Older People developed a practical clinical definition and consensus diagnostic criteria for sarcopenia. Loss of muscle function is common in fibromyalgia and in the elderly. The goal of this study is to determine whether the reduction of muscle function in fibromyalgia is related to sarcopenia according to the European Working Group on Sarcopenia in Older People criteria. Forty-five patients with fibromyalgia and thirty-nine healthy control female subjects were included. All the participants were assessed by Fibromyalgia Impact Questionnaire and SARC-F questionnaire. Muscle mass was evaluated by bioimpedance analysis, muscle strength by handgrip strength test and physical performance with the Short Physical Performance Battery. Fibromyalgia Impact Questionnaire and SARC-F scores were statistically significantly higher in the fibromyalgia group than in the control group, showing severe disease and a higher risk of sarcopenia in the fibromyalgia group (p < 0.001). Muscle strength and physical performance were statistically significantly lower in the group with fibromyalgia than in the control group (p < 0.001). There was no statistical difference between fibromyalgia and control groups regarding skeletal muscle mass (p = 0.263). Our study demonstrated a significant reduction in muscle function in fibromyalgia patients without any loss of muscle mass. Loss of muscle function without decrease in muscle mass is called dynapenia.


2021 ◽  
Vol 11 (7) ◽  
pp. 3146
Author(s):  
Dongmin Lee ◽  
Kyengho Byun ◽  
Moon-Hyon Hwang ◽  
Sewon Lee

Arterial stiffness is associated with an increased risk of cardiovascular disease. Previous studies have shown that there is a negative correlation between arterial stiffness and variables such as skeletal muscle mass, muscular strength, and anaerobic power in older individuals. However, little research has been undertaken on relationships in healthy young adults. This study presents a preliminary research that investigates the association between arterial stiffness and muscular factors in healthy male college students. Twenty-three healthy young males (23.9 ± 0.5 years) participated in the study. The participants visited the laboratory, and variables including body composition, blood pressure, arterial stiffness, blood parameters, grip strength, and anaerobic power were measured. Measurements of augmentation index (AIx) and brachial-ankle pulse wave velocity (baPWV) were performed to determine arterial stiffness. There were significant positive correlations among skeletal muscle mass, muscle strength, and anaerobic power in healthy young adult males. AIx was negatively associated with a skeletal muscle mass (r = −0.785, p < 0.01), muscular strength (r = −0.500, p < 0.05), and anaerobic power (r = −0.469, p < 0.05), respectively. Likewise, AIx@75 corrected with a heart rate of 75 was negatively associated with skeletal muscle mass (r = −0.738, p < 0.01), muscular strength (r = −0.461, p < 0.05), and anaerobic power (r = −0.420, p < 0.05) respectively. However, the baPWV showed no correlation with all muscular factors. Our findings suggest that maintaining high levels of skeletal muscle mass, muscular strength, and anaerobic power from relatively young age may lower AIx.


2018 ◽  
Vol 30 (12) ◽  
pp. 1424-1427 ◽  
Author(s):  
Yohei Sawaya ◽  
Masahiro Ishizaka ◽  
Akira Kubo ◽  
Kaori Sadakiyo ◽  
Akihiro Yakabi ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ana Anoveros-Barrera ◽  
Amritpal S. Bhullar ◽  
Cynthia Stretch ◽  
Abha R. Dunichand-Hoedl ◽  
Karen J. B. Martins ◽  
...  

Abstract Background Inflammation is a recognized contributor to muscle wasting. Research in injury and myopathy suggests that interactions between the skeletal muscle and immune cells confer a pro-inflammatory environment that influences muscle loss through several mechanisms; however, this has not been explored in the cancer setting. This study investigated the local immune environment of the muscle by identifying the phenotype of immune cell populations in the muscle and their relationship to muscle mass in cancer patients. Methods Intraoperative muscle biopsies were collected from cancer patients (n = 30, 91% gastrointestinal malignancies). Muscle mass was assessed histologically (muscle fiber cross-sectional area, CSA; μm2) and radiologically (lumbar skeletal muscle index, SMI; cm2/m2 by computed tomography, CT). T cells (CD4 and CD8) and granulocytes/phagocytes (CD11b, CD14, and CD15) were assessed by immunohistochemistry. Microarray analysis was conducted in the muscle of a second cancer patient cohort. Results T cells (CD3+), granulocytes/phagocytes (CD11b+), and CD3−CD4+ cells were identified. Muscle fiber CSA (μm2) was positively correlated (Spearman’s r = > 0.45; p = < 0.05) with the total number of T cells, CD4, and CD8 T cells and granulocytes/phagocytes. In addition, patients with the smallest SMI exhibited fewer CD8 T cells within their muscle. Consistent with this, further exploration with gene correlation analyses suggests that the presence of CD8 T cells is negatively associated (Pearson’s r = ≥ 0.5; p = <0.0001) with key genes within muscle catabolic pathways for signaling (ACVR2B), ubiquitin proteasome (FOXO4, TRIM63, FBXO32, MUL1, UBC, UBB, UBE2L3), and apoptosis/autophagy (CASP8, BECN1, ATG13, SIVA1). Conclusion The skeletal muscle immune environment of cancer patients is comprised of immune cell populations from the adaptive and innate immunity. Correlations of T cells, granulocyte/phagocytes, and CD3−CD4+ cells with muscle mass measurements indicate a positive relationship between immune cell numbers and muscle mass status in cancer patients. Further exploration with gene correlation analyses suggests that the presence of CD8 T cells is negatively correlated with components of muscle catabolism.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Vicent Esteve Simó ◽  
Anna Junqué Jiménez ◽  
Verónica Duarte Gallego ◽  
Irati Tapia González ◽  
Fátima Moreno Guzmán ◽  
...  

Abstract Background and Aims Sarcopenia is a skeletal muscle disorder associated with adverse outcomes including falls, physical disability and mortality particularly in hemodialysis (HD) patients. Currently, progressive resistance training exercise has been shown a proven method to treat and prevent sarcopenia. Nevertheless, these findings are poorly investigated in HD patients since exercise programs are not widespread. The aim of our study was to assess the effect of a home-based resistance exercise program (HBREP) on muscular strength, functional capacity and body composition in our hemodialysis patients with sarcopenia according to the European Working Group on Sarcopenia in Older People criteria (EWGSOP2). Method A 12 weeks single-center prospective study. HD patients from our institution with EWGSOP2 sarcopenia diagnosis were enrolled in a HBREP. Demographical an anthropometrical data, main biochemical and nutritional parameters, hand grip (HG) muscular strength, functional capacity tests: Sit to stand to seat 5 (STS5); Short Physical Performance Battery (SPPB), gait speed (GS), as well as body composition determined by electrical bioimpedance (BIA) and sarcopenia severity were analized. Results 18 HD patients with sarcopenia (71.4% severe) were included (4 drop out).78.6% men. Mean age 74.7 years and 53.3 months on HD. The main etiologies of ESRD were the HBP (21.4%) and DM (14.3%). Globally, a significant improvement was observed at the end of the study in relation to muscular strength (HG 19.9±6.1 vs 22.2±7.1 kg, p 0.001) and functional capacity tests (STS5 21.9±10.3 vs 17.2±9.9 sec, p 0.001; SPPB (6.9±2.3 vs 9.1±2.5 score, p 0.001 and GS 0.8±0.1 vs 0.9±0.2 m/s, p 0.015). Likewise, higher total skeletal muscle mass (SMM, 14.3±2.8 vs 14.5±2.9 kg) and SMM index (SMM/height2, 5.5±0.7 vs 5.7±0.9 Kg/m2 ) were found at the end of the study, although these differences were not significant. Finally, 2 patients (14.8%) reverse the EWGSOP2 sarcopenia criteria and 3 (21.4%) enhanced their severe sarcopenia. No relevant changes regarding anthropometrical data, main biochemical and nutritional parameters or dialysis adequacy were observed at the end of the study. Conclusion A home-based resistance exercise program improves muscular strength, functional capacity and body composition in our sarcopenic hemodialysis patients. With our results, home-based resistance exercise programs should be considered a key point in the prevention and treatment of skeletal muscle mass reduction due to sarcopenia in these patients. Further studies are mandatory to confirm our encouraging results.


2018 ◽  
Vol 103 ◽  
pp. 101-106 ◽  
Author(s):  
Ciriaco Carru ◽  
Mariasole Da Boit ◽  
Panagiotis Paliogiannis ◽  
Angelo Zinellu ◽  
Salvatore Sotgia ◽  
...  

2000 ◽  
Vol 99 (4) ◽  
pp. 309 ◽  
Author(s):  
Sarah L. ELKIN ◽  
Lauren WILLIAMS ◽  
Margaret MOORE ◽  
Margaret E. HODSON ◽  
Olga M. RUTHERFORD

2018 ◽  
Vol 74 (9) ◽  
pp. 1446-1453 ◽  
Author(s):  
Yasuharu Tabara ◽  
Tome Ikezoe ◽  
Mikihiro Yamanaka ◽  
Kazuya Setoh ◽  
Hiroaki Segawa ◽  
...  

Abstract Background The accumulation of advanced glycation end product (AGE) might exert deleterious effects on musculoskeletal properties. Our study aims to clarify this possible association in a large general population. Methods This study investigated a general population of 9,203 patients (mean age, 57.8 years). Skeletal muscle mass was measured by bioelectrical impedance analysis, whereas accumulation of AGEs was assessed by skin autofluorescence (SAF-AGE). The muscle strength of upper and lower limbs and usual gait speed were measured in a portion of older (≥60 years of age) participants (n = 1,934). The speed of sound (SOS) in the calcaneal bone was assessed via a quantitative ultrasound technique. Results In the total population, the frequency of low skeletal muscle mass linearly increased with the SAF-AGE quartiles (Q1: 14.2%, Q2: 16.1%, Q3: 21.1%, Q4: 24.8%; p < .001), and this association was independent of covariates including glycemic traits (Q4: odds ratio [OR] = 1.48, p < .001). The association between the highest SAF-AGE quartile and low skeletal muscle mass remained significant in the older subpopulation (OR = 1.85, p = .002). A similar but weak association was observed for low SOS (Q1: 8.9%, Q2: 8.3%, Q3: 10.4%, Q4: 12.2%; p < .001). Similar inverse associations were also observed with grip strength (OR = 1.98, p = .003), hip flexion strength (OR = 1.50, p = .012), and hip abduction strength (OR = 1.78, p = .001), but not with usual gait speed. Conclusion Accumulation of AGEs might be a deleterious factor for musculoskeletal properties.


Sign in / Sign up

Export Citation Format

Share Document