Elastic Deformation and Molecular Weight in Polyisobutylene

1946 ◽  
Vol 19 (4) ◽  
pp. 1047-1050
Author(s):  
John Rehner

Abstract Although various properties of high polymers are known to depend on molecular weight, there appear to be no published data which show explicitly how the molecular weight of a rubber-like substance influences the modulus of high elasticity, even though a psychological perception of some such relationship has long existed. Also, the various expressions that have been derived by statistical methods contain molecular weight as a factor ranging from an inverse first power up to inverse higher fractional powers. Some time ago a need arose in this laboratory for estimating the average molecular weights of samples of polyisobutylene by a rapid procedure. Because of the slowness of polymer dissolution, methods based on measurements of the polymer in the dissolved state had to be ruled out and an investigation was, therefore, made of the rate of compression of a variety of samples in a Williams parallel-plate plastometer. It was found possible to render negligible the viscous component of deformation by using a sufficiently high compressive load and by limiting readings to an interval of about one minute. When the observed deformation values were plotted against the logarithm of time, straight lines were obtained. The slopes of the lines could be correlated, at least approximately, linearly with the reciprocal average molecular weights of the samples.

1941 ◽  
Vol 14 (3) ◽  
pp. 580-589 ◽  
Author(s):  
G. Gee ◽  
L. R. G. Treloar

Abstract As high elasticity is a property possessed only by substances of high molecular weight, it is of interest to enquire into the relation between the elastic properties of a highly elastic material such as rubber and its molecular weight. An investigation on these lines has been made possible through the work of Bloomfield and Farmer, who have succeeded in separating natural rubber into fractions having different average molecular weights. The more important physical properties of these fractions have been examined with the object of determining which of the properties are dependent on molecular weight and which are not. Fairly extensive observations were made on the fractions from latex rubber referred to as Nos. 2, 3 and 4 by Bloomfield and Farmer, and some less extensive observations were carried out on the less oxygenated portion of fraction No. 1 obtained from crepe rubber (called hereafter 1b) . Before considering these experimental results, and their relation to the molecular weights of the fractions, it will be necessary to refer briefly to the methods used for the molecular-weight determinations, and to discuss the significance of the figures obtained.


1964 ◽  
Vol 37 (1) ◽  
pp. 99-102
Author(s):  
B. Ya Teitelbaum ◽  
K. F. Gubanov

Abstract In the previous work of Kargin and Slonimskii and that of Kargin and Sogolov who studied the behavior of polymers over a wide range of temperature, it was shown that the shape of thermomechanical curves depends on magnitude of molecular weight of the polymers. As a result of investigation of theory and actual experimental studies in which polyisobutylene was employed, it was demonstrated that molecular weight could be estimated on the basis of thermomechanical properties. This suggested a relationship between the magnitude of molecular weight M found from the thermomechanical curves and that which was determined from glass temperatures Tg and fluid temperatures Tf. For practical use of this relationship, it is necessary to know the magnitude of the segments and two empirical constants. These values can be found by calculation of molecular weights of three different fractions of the polymer. This can be accomplished experimentally by any independent method. Once these magnitudes are determined, it is necessary to find, by means of the thermomechanical curve, the values Tg and Tf, in order to calculate the molecular weight of any sample of the same polymer. Because of the low degree of accuracy of determination of these values, and because of the peculiar differences, the reliability of the calculated molecular weight cannot be great, especially since the equation utilizes the logarithm of the molecular weight figure and not the molecular weight itself. Apparently the graphic solution is simpler than analytical methods: by means of the data of thermomechanical studies for various fractions of known molecular weights it is possible to graph the dependence of M or log Mon Tf−Tg. From what has been said, it is evident that we may use the demonstrated method only for polymers of high elasticity, and furthermore, only for those fractions in which Tf−Tg is greater than zero.


2000 ◽  
Vol 132 (1) ◽  
pp. 59-68 ◽  
Author(s):  
L. Tessier ◽  
J.L. Boisvert ◽  
L.B-M. Vought ◽  
J.O. Lacoursière

AbstractThe aim of this study was to characterize polypeptide components of the capture net spun by trichopteran larvae Hydropsyche slossonae (Banks) (Trichoptera: Hydropsychidae). Thirty-one polypeptide bands were identified by SDS – polyacrylamide gel electrophoresis (SDS–PAGE) from extracted net material, with molecular weights ranging from 8500 to 179 000. Comparison with published data on Bombyx mori (L.) (Lepidoptera: Bombycidae) silk, treated under similar denaturing conditions, shows that six low molecular weight polypeptides ranging between 8500 and 18 800 in the silk of H. slossonae are absent from that of B. mori; furthermore, two high molecular weight polypeptides (210 000 and 220 000) detected in the silk of B. mori are not present in that of H. slossonae. Differences between both groups are probably related to their mode of living and to the specific use of silk (in air versus under water). Our findings are consistent with the current trend in the literature that silk spun by aquatic and terrestrial insects, as well as those spun by different species, is apparently made of different biopolymers according to the protein constituents. Hence, the polypeptide characterization of silk, combined with sequence data and (or) antibodies cross-reactivity data, could represent a potential tool for taxonomic classification improvement of aquatic insects. These results could eventually be used to characterize hydropsychid capture net anomalies induced by environmental pollution.


Author(s):  
C. E. Cluthe ◽  
G. G. Cocks

Aqueous solutions of a 1 weight-per cent poly (ethylene oxide) (PEO) were degassed under vacuum, transferred to a parallel plate viscometer under a nitrogen gas blanket, and exposed to Co60 gamma radiation. The Co60 source was rated at 4000 curies, and the dose ratewas 3.8x105 rads/hr. The poly (ethylene oxide) employed in the irradiations had an initial viscosity average molecular weight of 2.1 x 106.The solutions were gelled by a free radical reaction with dosages ranging from 5x104 rads to 4.8x106 rads.


1988 ◽  
Vol 60 (01) ◽  
pp. 107-112 ◽  
Author(s):  
Roy Harris ◽  
Louis Garcia Frade ◽  
Lesley J Creighton ◽  
Paul S Gascoine ◽  
Maher M Alexandroni ◽  
...  

SummaryThe catabolism of recombinant tissue plasminogen activator (rt-PA) was investigated after injection of radiolabelled material into rats. Both Iodogen and Chloramine T iodination procedures yielded similar biological activity loss in the resultant labelled rt-PA and had half lives in the rat circulation of 1 and 3 min respectively. Complex formation of rt-PA was investigated by HPLC gel exclusion (TSK G3000 SW) fractionation of rat plasma samples taken 1-2 min after 125I-rt-PA injection. A series of radiolabelled complexes of varying molecular weights were found. However, 60% of the counts were associated with a single large molecular weight complex (350–500 kDa) which was undetectable by immunologically based assays (ELISA and BIA) and showed only low activity with a functional promoter-type t-PA assay. Two major activity peaks in the HPLC fractions were associated with Tree t-PA and a complex having a molecular weight of ̴ 180 kDa. HPLC fractionation to produce these three peaks at various timed intervals after injection of 125I-rt-PA showed each to have a similar initial rate half life in the rat circulation of 4-5 min. The function of these complexes as yet is unclear but since a high proportion of rt-PA is associated with a high molecular weight complex with a short half life in the rat, we suggest that the formation of this complex may be a mechanism by which t-PA activity is initially regulated and finally cleared from the rat circulation.


1981 ◽  
Vol 45 (01) ◽  
pp. 090-094 ◽  
Author(s):  
Katsuo Sueishi ◽  
Shigeru Nanno ◽  
Kenzo Tanaka

SummaryFibrinogen degradation products were investigated for leukocyte chemotactic activity and for enhancement of vascular permeability. Both activities increased progressively with plasmin digestion of fibrinogen. Active fragments were partially purified from 24 hr-plasmin digests. Molecular weights of the permeability increasing and chemotactic activity fractions were 25,000-15,000 and 25,000 respectively. Both fractions had much higher activities than the fragment X, Y, D or E. Electron microscopic observation of the small blood vessels in rabbit skin correlated increased permeability with the formation of characteristic gaps between adjoining endothelial cells and their contraction.These findings suggest that lower molecular weight degradation products of fibrinogen may be influential in contributing to granulocytic infiltration and enhanced permeability in lesions characterized by deposits of fibrin and/or fibrinogen.


1964 ◽  
Vol 12 (01) ◽  
pp. 232-261 ◽  
Author(s):  
S Sasaki ◽  
T Takemoto ◽  
S Oka

SummaryTo demonstrate whether the intravascular precipitation of fibrinogen is responsible for the toxicity of heparinoid, the relation between the toxicity of heparinoid in vivo and the precipitation of fibrinogen in vitro was investigated, using dextran sulfate of various molecular weights and various heparinoids.1. There are close relationships between the molecular weight of dextran sulfate, its toxicity, and the quantity of fibrinogen precipitated.2. The close relationship between the toxicity and the precipitation of fibrinogen found for dextran sulfate holds good for other heparinoids regardless of their molecular structures.3. Histological findings suggest strongly that the pathological changes produced with dextran sulfate are caused primarily by the intravascular precipitates with occlusion of the capillaries.From these facts, it is concluded that the precipitates of fibrinogen with heparinoid may be the cause or at least the major cause of the toxicity of heparinoid.4. The most suitable molecular weight of dextran sulfate for clinical use was found to be 5,300 ~ 6,700, from the maximum value of the product (LD50 · Anticoagulant activity). This product (LD50 · Anticoagulant activity) can be employed generally to assess the comparative merits of various heparinoids.5. Clinical use of the dextran sulfate prepared on this basis gave satisfactory results. No severe reaction was observed. However, two delayed reactions, alopecia and thrombocytopenia, were observed. These two reactions seem to come from the cause other than intravascular precipitation.


1962 ◽  
Vol 08 (02) ◽  
pp. 270-275 ◽  
Author(s):  
David L Aronson ◽  
John W Preiss ◽  
Michael W Mosesson

SummaryThe molecular weights of AHF (factor VIII) and of PTC (factor IX) have been estimated by their sensitivity to inactivation by 7 kilovolt electrons. The molecular weight of AHF was found to be 180 000 by this method and that of PTC was found to be 110 000.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1218
Author(s):  
Raffael Rathner ◽  
Wolfgang Roland ◽  
Hanny Albrecht ◽  
Franz Ruemer ◽  
Jürgen Miethlinger

The Cox-Merz rule is an empirical relationship that is commonly used in science and industry to determine shear viscosity on the basis of an oscillatory rheometry test. However, it does not apply to all polymer melts. Rheological data are of major importance in the design and dimensioning of polymer-processing equipment. In this work, we investigated whether the Cox-Merz rule is suitable for determining the shear-rate-dependent viscosity of several commercially available high-density polyethylene (HDPE) pipe grades with various molecular masses. We compared the results of parallel-plate oscillatory shear rheometry using the Cox-Merz empirical relation with those of high-pressure capillary and extrusion rheometry. To assess the validity of these techniques, we used the shear viscosities obtained by these methods to numerically simulate the pressure drop of a pipe head and compared the results to experimental measurements. We found that, for the HDPE grades tested, the viscosity data based on capillary pressure flow of the high molecular weight HDPE describes the pressure drop inside the pipe head significantly better than do data based on parallel-plate rheometry applying the Cox-Merz rule. For the lower molecular weight HDPE, both measurement techniques are in good accordance. Hence, we conclude that, while the Cox-Merz relationship is applicable to lower-molecular HDPE grades, it does not apply to certain HDPE grades with high molecular weight.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 850
Author(s):  
Donghyuk Kim ◽  
Byungkyu Ahn ◽  
Kihyun Kim ◽  
JongYeop Lee ◽  
Il Jin Kim ◽  
...  

Liquid butadiene rubber (LqBR) which used as a processing aid play a vital role in the manufacturing of high-performance tire tread compounds. However, the studies on the effect of molecular weight, microstructure, and functionalization of LqBR on the properties of compounds are still insufficient. In this study, non-functionalized and center-functionalized liquid butadiene rubbers (N-LqBR and C-LqBR modified with ethoxysilyl group, respectively) were synthesized with low vinyl content and different molecular weights using anionic polymerization. In addition, LqBR was added to the silica-filled SSBR compounds as an alternative to treated distillate aromatic extract (TDAE) oil, and the effect of molecular weight and functionalization on the properties of the silica-filled SSBR compound was examined. C-LqBR showed a low Payne effect and Mooney viscosity because of improved silica dispersion due to the ethoxysilyl functional group. Furthermore, C-LqBR showed an increased crosslink density, improved mechanical properties, and reduced organic matter extraction compared to the N-LqBR compound. LqBR reduced the glass transition temperature (Tg) of the compound significantly, thereby improving snow traction and abrasion resistance compared to TDAE oil. Furthermore, the energy loss characteristics revealed that the hysteresis loss attributable to the free chain ends of LqBR was dominant.


Sign in / Sign up

Export Citation Format

Share Document