scholarly journals Phenolic compounds in whole-grains of wheat: a review

Author(s):  
Monica Sharma ◽  
Pranav Bhaskar

Whole-grains are important food resources for human beings, therefore, there is a need to pay special attention to increase their production to feed the world’s rapidly increasing population. Whole-grains are highly rich in nutrition and bioactive properties due to the available health-promoting biologically active metabolites such as phenolic compounds. Phenolic compounds are antioxidant-rich secondary metabolites having immense health benefits. Owing to their strong antioxidant activities, they have anti-inflammatory, anti-carcinogenic, and anti-diabetic properties; they exhibit anti-aging effects and can also cure cardiovascular diseases, obesity, etc. Numerous epidemiological studies have proven the inverse correlation between the consumption of whole cereal grains and reduce chronic diseases. This review article focuses on biologically active components of wheat grains, namely phenolic compounds, including their chemical structures, classification, biosynthesis, bioactivity, and bioavailability. Health benefits and functional potential of consumption of whole cereal grains have also been discussed.

2020 ◽  
Vol 9 (4) ◽  
pp. 318-327
Author(s):  
Sangeeta Dahiya ◽  
Daizy R. Batish ◽  
Harminader Pal Singh

Pogostemon benghalensis (Burm.f.) Kuntze (Lamiaceae) is an important aromatic plant. Multiple classes of phytochemicals such as flavonoids, phenols, phytosteroids, carbohydrates, fatty acids, glycosides, sterols, terpenoids, tannins, essential oil, and alkaloids have been isolated from the title species. Different plant parts have been used as traditional remedies for various ailments. The present review aims to update and coherent the fragmented information on botanical aspects, phytochemistry, traditional uses, and pharmacological activities. An extensive review of the literature was carried out by using various search engines like PubMed, Scopus, Science Direct, Google Scholar, Google, Scifinder for information. The articles were searched using the keywords "Pogostemon", "Parviflorus’, "benghalensis". Chemical structures of the chemical compounds were drawn using software Chem Draw ultra 8.0. Most of the plant parts have been used for the treatment of various ailments. Phytochemistry reveals that the plant is a rich source of various biologically active compounds. Pogostemon extracts exhibited numerous pharmacological effects like anticancer, anti-inflammatory, antimicrobial and antioxidant activities. In sum, P. benghalensis is a promising aromatic and medicinal plant as depicted by its various traditional uses and pharmacological studies. Bioactive compounds, responsible for its various pharmacological activities at the molecular level, need further detailed investigations. Future clinical studies are also required to validate the various traditional uses of P. benghalensis.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Michele Greque de Morais ◽  
Bruna da Silva Vaz ◽  
Etiele Greque de Morais ◽  
Jorge Alberto Vieira Costa

Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.


10.5219/1360 ◽  
2020 ◽  
Vol 14 ◽  
pp. 393-401
Author(s):  
Yulia Vinogradova ◽  
Olena Vergun ◽  
Olga Grygorieva ◽  
Eva Ivanišová ◽  
Ján Brindza

Chokeberry (Aronia Medik.) is a non-traditional fruit plant known as a rich source of biologically active compounds and inhibits the numerous biological activities. We compared the antioxidant activity and phenolic compounds of fruits between widely cultivated Aronia mitschurinii (AM-TCH, from Tchekhov district; AM-D, from Dmitrov district; AM-OZ, from Orekhovo-Zuevsky district of Moscow region, Russia) and introduced North American Aronia species (Aronia arbutifolia (AA-M), A. melanocarpa (AML-M), A. × prunifolia (AP-M), which have not been planted yet in the arboretum of Main Botanical Garden of the Russian Academy of Sciences (Moscow). Studying samples were collected in their secondary distribution range. Ethanolic extracts were determined for antioxidant capacity (antioxidant activity by DPPH and phosphomolybdenum methods, the total content of polyphenols, flavonoids, phenolic acids) and measured spectrophotometrically. As standards were used Trolox (TE) for antioxidant activities, gallic acid (GAE) for polyphenol content, quercetin (QE) for flavonoid content, caffeic acid (CAE) for phenolic acid content. The antioxidant activity by DPPH method in ethanol extracts of investigated plants was from 6.96 (AM-D) to 8.89 (AM-OZ) mg TE.g-1 DW. Reducing the power of investigated extracts exhibited activity from 151.47 (AM-OZ) to 297.8 (AA-M) mg TE.g-1 DW. The content of polyphenol compounds determined from 25.98 (AM-TCH) to 54.39 (AA-M) mg GAE.g-1 DW, phenolic acids content was from 7.76 (AP-M) to 11.87 (AM-D) mg CAE.g-1 DW and the content of flavonoids detected from 8.12 (AM-OZ) to 16.62 (AM-D) mg QE.-1 DW. Obtained data showed a strong correlation between the content of polyphenol compounds and reducing the power of extracts (r = 0.700), between flavonoids and phenolic acids (r = 0.771) and also between phenolic acids and reducing power (r = 0.753) in Aronia ethanol extracts. Fruits of investigated species of Aronia can be propagated as a source of polyphenol compounds with antioxidant activity and obtained results may use for farther pharmacological study.


2021 ◽  
pp. 277-289
Author(s):  
Nazira Sunagatovna Karamova ◽  
Venera Ravilevna Khabibrakhmanova ◽  
Issam Yosef Abdul-Hafeez ◽  
Syumbelya Kamilevna Gumerova ◽  
Yazgul Nasikovna Kamalova ◽  
...  

Many members of the Asparagaceae family are used in traditional medicine in different countries and characterized by a high content of biologically active metabolites. In this work, the qualitative composition and quantitative content of the components of methanol extracts from leaves and underground organs of Sansevieria cylindrica Bojer ex Hook, Sansevieria trifasciata Prain, Polianthes tuberosa L., leaves of Yucca filamentosa L. and Furcraea gigantea var. watsoniana (Hort. Sander) Drumm. were determined. Extraction of plant leaves and underground organs using 80% methanol resulted in 5.2–16.7% and 16–25.1% of the total extractive substances consequently. The presence of steroidal saponins in the extracts was shown by thin layer chromatography. Spirostanol saponins were predominate in the extracts from leaves of Y. filamentosa, F. gigantea and underground organs of S. cylindrica, S. trifasciata, P. tuberosa, furastanol saponins – in the extracts from leaves of S. cylindrica and S. trifasciata. The content of terpenoid and phenolic compounds in the extracts established using spectrophotometry significantly differs depending on the plant species and their anatomical part. All the extracts tested exhibited inhibition of the 2,2-diphenyl-1-picrylhydrazyl free radical in dose-dependent manner. The highest antiradical activity demonstrated the extract from the leaves of Y. filamentosa (IC50 = 25.95 μg/ml) containing the largest amount of phenolic compounds, including flavonoids – 51.3 and 15.5% of the total extractive substances.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257479
Author(s):  
Grzegorz J. Wolski ◽  
Beata Sadowska ◽  
Marek Fol ◽  
Anna Podsędek ◽  
Dominika Kajszczak ◽  
...  

Mosses are mainly the object of ecological and taxonomic research. This group of plants are still underestimated by scientists in other aspects of research. Recent research has shown that these plants contain remarkable and unique substances with high biological activity. Five species of mosses from a large urban ecosystem were identified for present study. In order to determine their biological potential, multifaceted studies were carried out, including: total phenolics content, antioxidant activity, antimicrobial and antifungal study, cytotoxicity evaluation, and scratch assay to assess pro-regenerative effect in the context of their possible use as the ingredients of biologically active cosmetics. Additionally, determination of individual phenolic compounds in selected extracts of the tested mosses was made. Research showed that Ceratodon purpureus and Dryptodon pulvinatus extracts had the greatest potential as antioxidants and antimicrobial activity. The cytotoxicity assessment indicated that the extracts from Dryptodon pulvinatus and Rhytidiadelphus squarossus exerted the strongest negative effect on mouse fibroblast line L929 viability at higher concentrations. While, the extract from Tortulla muralis best stimulated human foreskin fibroblast line HFF-1 proliferation and wound healing. The research on individual phenolic compounds content in the extracts tested indicated over 20 peaks on UPLC chromatograms. The conducted study has shown that mosses, especially so far unexplored species of open ecosystems, and e.g. epilytic habitats, may be a valuable source of biologically active substances and thus may constitute important medical and cosmetic possibilities.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Hefa Mangzira Kemung ◽  
Loh Teng-Hern Tan ◽  
Kok-Gan Chan ◽  
Hooi-Leng Ser ◽  
Jodi Woan-Fei Law ◽  
...  

The mangrove ecosystem of Malaysia remains yet to be fully explored for potential microbes that produce biologically active metabolites. In the present study, a mangrove-derived Streptomyces sp. strain MUSC 14 previously isolated from the state of Pahang, Malaysia Peninsula, was studied for its potential in producing antioxidant metabolites. The identity of Streptomyces sp. strain MUSC14 was consistent with the genotypic and phenotypic characteristics of the Streptomyces genus. The antioxidant potential of Streptomyces sp. strain MUSC 14 was determined through screening of its methanolic extract against sets of antioxidant assays. The results were indicative of Streptomyces sp. strain MUSC 14 displaying strong antioxidant activity against ABTS, DPPH free radicals and metal chelating activity of 62.71 ± 3.30%, 24.71 ± 2.22%, and 55.82 ± 2.35%, respectively. The result of ferric reducing activity measured in terms of dose was equivalent to 2.35–2.45 μg of positive control ascorbic acid. Furthermore, there was a high correlation between the total phenolic content and the antioxidant activities with r = 0.979, r = 0.858, and r = 0.983 representing ABTS, DPPH, and metal chelation, respectively. Overall, the present study suggests that Streptomyces sp. strain MUSC 14 from mangrove forest soil has potential to produce antioxidant metabolites that can be further exploited for therapeutic application.


2020 ◽  
Vol 10 (3) ◽  
pp. 947 ◽  
Author(s):  
Bahare Salehi ◽  
Elena Azzini ◽  
Paolo Zucca ◽  
Elena Maria Varoni ◽  
Nanjangud V. Anil Kumar ◽  
...  

Plants and their corresponding botanical preparations have been used for centuries due to their remarkable potential in both the treatment and prevention of oxidative stress-related disorders. Aging and aging-related diseases, like cardiovascular disease, cancer, diabetes, and neurodegenerative disorders, which have increased exponentially, are intrinsically related with redox imbalance and oxidative stress. Hundreds of biologically active constituents are present in each whole plant matrix, providing promissory bioactive effects for human beings. Indeed, the worldwide population has devoted increased attention and preference for the use of medicinal plants for healthy aging and longevity promotion. In fact, plant-derived bioactives present a broad spectrum of biological effects, and their antioxidant, anti-inflammatory, and, more recently, anti-aging effects, are considered to be a hot topic among the medical and scientific communities. Nonetheless, despite the numerous biological effects, it should not be forgotten that some bioactive molecules are prone to oxidation and can even exert pro-oxidant effects. In this sense, the objective of the present review is to provide a detailed overview of plant-derived bioactives in age-related disorders. Specifically, the role of phytochemicals as antioxidants and pro-oxidant agents is carefully addressed, as is their therapeutic relevance in longevity, aging-related disorders, and healthy-aging promotion. Finally, an eye-opening look into the overall evidence of plant compounds related to longevity is presented.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Shuangqi Tian ◽  
Yue Sun ◽  
Zhicheng Chen ◽  
Yingqi Yang ◽  
Yanbo Wang

Phenolic compounds are important products of secondary metabolism in plants. They cannot be synthesized in the human body and are mainly taken from food. Cereals, especially whole grains, are important sources of dietary polyphenols. Compared with vegetables and fruits, the content and biological activities of polyphenols in cereals have long been underestimated. Polyphenols in whole grains are non-nutritive compounds, which are distributed in all structural areas of cereal substances, mainly phenolic acids, flavonoids, and lignans. In recent years, the health effects of whole grains are closely related to their phenolic compounds and their antioxidant activities. Now, different physicochemical processing treatments and their effects have been summarized in order to provide the basis for promoting the development and utilization of food. The various functions of whole grains are closely related to the antioxidant effect of polyphenols. As the basic research on evaluating the antioxidant effect of active substances, in vitro antioxidant tests are faster and more convenient.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 805 ◽  
Author(s):  
Kevin Becker ◽  
Anna-Charleen Wessel ◽  
J. Jennifer Luangsa-ard ◽  
Marc Stadler

During the course of our search for novel biologically active metabolites from tropical fungi, we are using chemotaxonomic and taxonomic methodology for the preselection of interesting materials. Recently, three previously undescribed benzo[j]fluoranthenes (1−3) together with the known derivatives truncatones A and C (4, 5) were isolated from the stromata of the recently described species Annulohypoxylon viridistratum collected in Thailand. Their chemical structures were elucidated by means of spectral methods, including nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). The new compounds, for which we propose the trivial names viridistratins A−C, exhibited weak-to-moderate antimicrobial and cytotoxic activities in cell-based assays.


2018 ◽  
Vol 48 (2) ◽  
pp. 285-300 ◽  
Author(s):  
S. Sarkar

Purpose Consumer inclination towards probiotic foods has been stimulated due to well-documented evidence of health benefits of probiotic-containing products and consumer demand for natural products. It is assumed that the viability and metabolic activities of probiotics are essential for extending health benefits and for successful marketing of probiotics as a functional food. The purpose of this paper is to demonstrate that even dead or inactivated probiotic cells could extend health benefits, indicating that probiotic viability is not always necessary for exhibiting health benefits. Design/methodology/approach Attempt has been made to review the literature on the status of probiotic foods available in the world market, their impact on the gut flora and the various factors affecting their viability. Both review and research papers related to efficacy of inactivated, killed or dead probiotic cells towards health benefits have been considered. Keywords used for data search included efficacy of viable or killed, inactivated probiotic cells. Findings The reviewed literature indicated that inactivated, killed or dead probiotic cells also possess functional properties but live cells are more efficacious. All live probiotic cultures are not equally efficacious, and accordingly, dead or inactivated cells did not demonstrate functional properties to extend health benefits to all diseases. Originality/value Capability of non-viable microorganisms to confer health benefits may attract food manufacturers owing to certain advantages over live probiotics such as longer shelf-life, handling and transportation and reduced requirements for refrigerated storage and inclusion of non-bacterial, biologically active metabolites present in fermented milks’ fraction as dried powders to food matrixes may result in the development of new functional foods.


Sign in / Sign up

Export Citation Format

Share Document