scholarly journals The Study of PM10 Concentration and Trace Metal Content in Different Areas of Karachi, Pakistan

Author(s):  
Durdana Rais Hashmi ◽  
Akhtar Shareef ◽  
Farooq Ahmed Khan

Atmospheric particulate matter may exert serious health hazards because of its chemicalcharacteristics. Aim of this study was to determine the concentrations of particulate matter (PM) with anaerodynamic diameter <10 mm (PM10), and air transmitted particulate trace metals in different areas ofKarachi’s ambient air, for the period of 01 year viz. June 2011 to June 2012. Furthermore, the present workcompares the levels of particulate matter and trace metals with the proposed limiting values from the U.S.Environmental Protection Agency (65 mg/m3 for PM10). The sampling for PM10 was performed by usinga high volume air sampler. The PM10 levels were determined by gravimetry and the metals by graphitefurnace. Arithmetic means of 361.0 mg/m3 was determined for PM10 in commercial areas, 275.0 mg/m3 inresidential areas, 438.0 mg/m3 in industrial areas and 68.9 mg/m3 in background areas of Karachi. Tracemetal content in PM10, such as lead (Pb) and cadmium (Cd) were also analysed separately during the sameperiod using atomic absorption spectrometry. The average concentration of Pb were found in commercialzone 1.36 mg/m3, in residential zone 1.0 mg/m3, in industrial zone 1.46 mg/m3 and in urban backgroundzone 0.6 mg/m3, whereas; Cd concentration in commercial zone 0.10 µg/m3, in residential zone 0.02 µg/m3,in industrial zone 0.25 µg/m3 and in urban background zone 0.01 µg/m3, respectively.

2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Rizki Andre Handika ◽  
Solikhati Indah Purwaningrum ◽  
Resti Ayu Lestari

<p>PM <sup>10</sup> Pollutant is an air particulate that cannot be detected by a nose hair. It contains carcinogenic and non-carcinogenic chemical components. This study, therefore, aims to quantify the concentration of PM <sup>10</sup> and identify the risks of the non-carcinogenic type’s exposure to the public’s health in the commercial area of Pasar Jambi sub-district. Measurement of PM  concentration was performed on Sunday (weekend) and Monday (weekday) using high volume air sampler (HVAS). Furthermore, questionnaire and interviewing were implemented on 95 people amounting to 12% of the total population. The result shows that PM <sup>10</sup>  concentrations were observed to have exceeded ambient air quality standards of 196.9 µg/m3 on weekend and 2.094 µg/m3 weekday. Further- more, the average concentration of Al and Mn in PM <sup>10</sup>  were 1.69384 µg/m3 and 0.04191 µg/m3 respectively. Although the public health activity was already at the risk of PM10 non-carcinogenic exposure in the commercial district (i.e RQ &gt; 1), there has notbeen any environmental health risks for the non-carcinogenic metals (Al and Mn) to the society. Therefore, risk management is carried out to protect the population from PM risks. Risk management comprises calculating the safe concentration, duration, frequency, and time of exposure on these weekend and weekday</p>


2021 ◽  
Vol 25 (11) ◽  
pp. 20-27
Author(s):  
Dipa Lalwani ◽  
Dhruti Patel ◽  
Baiju Varghese ◽  
J.I. Nirmal Kumar ◽  
N. Rita Kumar

The organic pollutants associated with atmospheric particulate matter (PM) in the environment, especially PM2.5 (particles <2.5 μm) have become a major issue worldwide in the past decade. The ambient air samples of four different sizes of particles were collected using an active air sampler (cascade impactor) from three cities of Gujarat: Anand, Ahmedabad and Surat. To study morphology and elemental composition, Scanning electron microscope (SEM) and Energy dispersive X-ray system (EDX) were used for fine particle size <1.0 μm. Besides, organic pollutants associated with particulate matter were analyzed using Gas Chromatography-Mass Spectrometry (GC–MS). Total 54 organic chemicals including 29 aliphatic (alkanes and alkanoic acids) and 25 aromatic chemical compounds were identified qualitatively. Phthalate, the well-known plasticizer was found in the atmosphere of all three study sites. In addition, polycyclic aromatic hydrocarbons (PAHs) such as naphthalene and fluorene were quantified at high concentrations in Ahmedabad (315 ng/m3 and 509 ng/m3 respectively) followed by Surat (310 ng/m3 and 382 ng/m3) and Anand (76.1 ng/m3 and 123 ng/m3). The distribution of organic chemicals was found diverse at three locations which might be influenced by the different sources and landmass usage in each city. The presence of the carbonaceous elements in the particles indicates biomass burning emissions during the winter season which might be a source of pollutants in the studied areas.


Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 866 ◽  
Author(s):  
Marzena Rachwał ◽  
Małgorzata Wawer ◽  
Mariola Jabłońska ◽  
Wioletta Rogula-Kozłowska ◽  
Patrycja Rogula-Kopiec

The main objective of this research was the determination of the geochemical and mineralogical properties of particulate matter: TSP (total suspended particles) and, especially PM1 (particles with aerodynamic diameter not greater than 1 µm) suspended in the air of a selected urban area in southern Poland. Identification of the emission sources of metals and metalloids bound in TSP and PM1 as well as the assessment of potential risk of urban ambient air to human health using hazard indices was an additional aim of this investigation. The daily TSP and PM1 quartz fiber filters collected during heating season were subjected to mass magnetic susceptibility (χ) measurements, SEM (Scanning Electron Microscopy) observations and geochemical analyses. Obtained results revealed that the concentration of TSP and PM1 well correlated with their mass-specific magnetic susceptibility. The good relationship between the PM concentration and χ suggests that magnetic susceptibility measurements can be a good proxy of low-level atmospheric dust pollution. The rank order of potentially toxic elements (PTE) based on average concentration was Ba > Zn > Al > Fe > Pb > Mn > Ti > Cu > Cr > Ni >As > Cd > V > Tl, both for TSP and PM1. PM1/TSP ratios for PTE concentrations and χ were around or slightly above unity, which indicated that PM1 was the main carrier of PTE (with the exception of cadmium, copper and lead) and technogenic magnetic particles. The non-carcinogenic and carcinogenic risks were confirmed by very high values of human health indices.


2015 ◽  
Vol 7 (6) ◽  
pp. 1145
Author(s):  
Patricia Simone Palhana Moreira ◽  
Rivanildo Dallacort ◽  
Idilaine De Fatima Lima ◽  
Rafael Cesar Tieppo ◽  
Cristiano Santos

O objetivo do presente trabalho foi analisar as concentrações de material particulado presente na atmosfera de Tangará da Serra-MT, e correlacioná-los com as variáveis meteorológicas, informações de saúde e com o número de focos de queimada no Estado de Mato Grosso. Os dados de material particulado foram amostrados diariamente a cada 5 minutos, com auxilio do coletor DataRam4, no período de agosto de 2008 a julho de 2009. Os dados meteorológicos foram disponibilizados pelo Instituto Nacional de Meteorologia - INMET, o qual possui uma estação meteorológica instalada na Universidade do Estado de Mato Grosso – UNEMAT. A média de concentração do período foi de 30,1 ug.m-3. Os meses de agosto, setembro e outubro apresentaram concentrações mais altas de material particulado, nestes meses também ocorreram os maiores números de queimadas no Estado. Nos meses em que foram registrados os picos de concentração, houve dias em que os padrões de qualidade do ar foram ultrapassados. No mês de outubro, que foi o de maior concentração, as médias diárias ultrapassaram 150 ug.m-3 em três dias. As concentrações de material particulado (PM10) foram altas apenas em um período relativamente curto, de apenas três meses, nos demais meses as concentrações foram baixas, não ultrapassando os limites de qualidade do ar.  A B S T R A C T The aim of this work was to analyze the atmospheric particulate matter concentrations in Tangara da Serra MT, and correlate them with meteorological variables, health information and the number of fire spots in Mato Grosso State. The particulate matter data were sampled every five minutes daily with a DataRam4 collector, from August 2008 to July 2009. Meteorological data were acquired from the National Institute of Meteorology - INMET, which has a weather station at the Mato Grosso State University - UNEMAT. The average concentration for the period was 30.1 ug.m-3. The months of August, September and October showed higher concentrations of particulate matter, in these months also occurred the highest number of fire spots in the State. In the months that had the concentrations peak, there were days when the air quality standards were exceeded. In October, which had the highest concentration, the daily average exceeded 150 ug.m-3 in three days. The concentrations of particulate matter (PM10) were high, but only in a relatively short period of three months, in the remaining months the concentrations were low, not exceeding the limits of air quality. Keywords: Meteorological Variables, Fire Spots, Meteorology.  


Author(s):  
Mageshkumar P ◽  
Ramesh S ◽  
Angu Senthil K

A comprehensive study on the air quality was carried out in four locations namely, Tiruchengode Bus Stand, K.S.R College Campus, Pallipalayam Bus Stop and Erode Government Hospital to assess the prevailing quality of air. Ambient air sampling was carried out in four locations using a high volume air sampler and the mass concentrations of PM10, PM2.5, SO2, NOX and CO were measured. The analyzed quality parameters were compared with the values suggested by National Ambient Air Quality Standards (NAAQS). Air quality index was also calculated for the gaseous pollutants and for Particulate Matters. It was found that PM10 concentration exceeds the threshold limits in all the measured locations. The higher vehicular density is one of the main reasons for the higher concentrations of these gaseous pollutants. The air quality index results show that the selected locations come under moderate air pollution.


2019 ◽  
Author(s):  
Zoran Kitanovski ◽  
Pourya Shahpoury ◽  
Constantini Samara ◽  
Aristeidis Voliotis ◽  
Gerhard Lammel

Abstract. Nitro-monoaromatic hydrocarbons (NMAHs), such as nitrocatechols, nitrophenols and nitrosalicylic acids, are important constituents of atmospheric particulate matter (PM) water soluble organic carbon (WSOC) and humic-like substances (HULIS). Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons (NPAHs, OPAHs) are toxic and ubiquitous in the ambient air; due to their light absorption properties, together with NMAHs they are part of aerosol brown carbon (BrC). We investigated the winter concentrations of these substance classes in size-resolved particulate matter (PM) from two urban sites in central and southern Europe, i.e. Mainz (MZ), Germany and Thessaloniki (TK), Greece. ∑11NMAH concentrations in PM10 and total PM were 0.51–8.38 and 12.1–72.1 ng m−3 at MZ and TK site, respectively, whereas ∑8OPAHs were 47–1636 and 858–4306 pg m−3, and ∑17NPAHs were ≤ 90 and 76–578 pg m−3, respectively. NMAHs and the water-soluble OPAHs contributed 0.4 and 1.8 %, and 0.0001 and 0.0002 % to the HULIS mass, at MZ and TK, respectively. The mass size distributions of the individual substances generally peaked in the smallest or second smallest size fraction i.e.,


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 661
Author(s):  
Denise C. Napolitano ◽  
Hilairy E. Hartnett ◽  
Pierre Herckes

Inorganic carbonate can be an important component of atmospheric particulate matter in arid environments where mineral dust components contribute significantly to air particulate matter. Carbonate carbon (CC) is only rarely quantified in atmospheric studies and methods to quantify carbonate in atmospheric samples are rare. In this manuscript, we present a novel protocol for quantifying carbonate carbon in atmospheric particulate matter samples, through the acidification of aerosol filters at ambient pressure and temperature and subsequent measurement of carbon dioxide (CO2) released upon acidification. This method is applicable to a variety of filter media used in air pollution studies, such as Teflon, cellulose, or glass fiber filters. The method allows the customization of the filter area used for analysis (up to 24 cm2) so that sufficient CO2 can be detected when released and to assure that the sample aliquot is representative of the whole filter. The resulting detection limits can be as low as 0.12 µg/cm2. The analysis of a known amount of sodium bicarbonate applied to a filter resulted in a relative error within 15% of the known mass of bicarbonate when measured 20 min after acidification. A particulate matter sample with aerodynamic diameter larger than 2.5 µm (PM>2.5) collected via cascade impaction on a high-volume aerosol sampler yielded good precision, with a CC concentration of 4.4 ± 0.3 µgC/cm2 for six replicates. The precision, accuracy, and reproducibility of this method of CC measurement make it a good alternative to existing quantification methods.


2019 ◽  
Vol 43 (1) ◽  
pp. 59-66
Author(s):  
Mohammad Lokman Hossain ◽  
Subrata Chandra Roy ◽  
Mithun Chandra Bepari ◽  
Bilkis Ara Begum

Air borne particulate matter PM10 and PM2.5 were collected by using Mini Vol portable Air Sampler from the world most densely populated city Dhaka and its suburban areas over a period of January through December in 2016. This study revealed a comparison of atmospheric particulate matter (PM) of a highly polluted urban area to its two neighboring areas that accommodate heavy oil based power plants. In all three sites the quantity of PM decreases in summer reaching its lowest level in the month of July, however, it increases significantly in winter season. Despite the presence of the fuel based power plants the average concentrations of PM10 and PM2.5 at the city Dhaka surpasses its two neighbors Manikganj and Nawabganj. Interestingly, PM2.5/PM10 ratio is higher at the suburban areas than urban area. The study shows that for all the sites PM2.5 is approximately twice than that of WHO and USEPA. However, the values of PM2.5 is almost similar for Nawabganj and Manikganj but much higher for the Dhaka city especially during dry season . The Mass concentration of Black Carbon (BC) was also determined from the PM samples from Manikganj and Nawabganj. Journal of Bangladesh Academy of Sciences, Vol. 43, No. 1, 59-66, 2019


2011 ◽  
Vol 71-78 ◽  
pp. 2867-2872 ◽  
Author(s):  
Dang Yu Song ◽  
Cun Bei Yang

A total of 28 atmospheric particulate matter samples were collected at Henan Polytechnic University in the southeast of Jiaozuo city during October to December 2010. The daily concentrations of PM10 vary from 190.76 to 670.14 μg/m3, with the average concentration of 359.36 μg/m3. The concentrations of Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Fe, Cu, Zn, Mn and Pb in PM10 are determined by Energy Dispersive X-Ray Fluorescence (EDXRF). The result shows that the fifteen elements quality accounts for 17.3%~36.7% of total mass. The X-ray diffraction (XRD) results show that six minerals are identified in the atmospheric particles. They are quartz, gypsum, kaolinite, sal-ammoniac, calcite, and albite, which account for 29%, 29%, 18%, 17%, 4% and 3%, respectively. The principle component analysis (PCA) model is used for source apportionment of PM10. The research results show that there are four sources: architecture/smelting action, coal combustion/traffic action, soil dust and particular industrial action.


Sign in / Sign up

Export Citation Format

Share Document