scholarly journals Experience of People in Mild and Moderate Stages of Alzheimer’s Disease in Spain

Aquichan ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1-11
Author(s):  
Jorge Riquelme-Galindo ◽  
Sofía García-Sanjuán ◽  
Manuel Lillo-Crespo ◽  
Maria-Antonia Martorell-Poveda

Objective: To analyze the meaning of dementia by those affected by it, and to give them a voice. Material and methods: Descriptive phenomenology through interviews with people of both genders who are over 50 years old and living in Tarragona (Spain), with a diagnosis of mild or moderate dementia, mainly related to Alzheimer’s disease. Results: Three main themes emerged: 1) normalization of memory loss in early stages as part of the natural aging process; 2) self-awareness of progressive memory decline, which is concealed from others, and 3) adaptation processes and strategies to coexist with their condition after diagnosis. Conclusions: The most evident features were the lack of specialized infrastructures within the health system in terms of care, prevention programs, and early detection.

2021 ◽  
Vol 22 (22) ◽  
pp. 12280
Author(s):  
Sabyasachi Maity ◽  
Kayla Farrell ◽  
Shaghayegh Navabpour ◽  
Sareesh Naduvil Narayanan ◽  
Timothy J. Jarome

Epigenetic mechanisms, which include DNA methylation, a variety of post-translational modifications of histone proteins (acetylation, phosphorylation, methylation, ubiquitination, sumoylation, serotonylation, dopaminylation), chromatin remodeling enzymes, and long non-coding RNAs, are robust regulators of activity-dependent changes in gene transcription. In the brain, many of these epigenetic modifications have been widely implicated in synaptic plasticity and memory formation. Dysregulation of epigenetic mechanisms has been reported in the aged brain and is associated with or contributes to memory decline across the lifespan. Furthermore, alterations in the epigenome have been reported in neurodegenerative disorders, including Alzheimer’s disease. Here, we review the diverse types of epigenetic modifications and their role in activity- and learning-dependent synaptic plasticity. We then discuss how these mechanisms become dysregulated across the lifespan and contribute to memory loss with age and in Alzheimer’s disease. Collectively, the evidence reviewed here strongly supports a role for diverse epigenetic mechanisms in memory formation, aging, and neurodegeneration in the brain.


Author(s):  
Lili Pan ◽  
Yu Ma ◽  
Yunchun Li ◽  
Haoxing Wu ◽  
Rui Huang ◽  
...  

Abstract:: Recent studies have proven that the purinergic signaling pathway plays a key role in neurotransmission and neuromodulation, and is involved in various neurodegenerative diseases and psychiatric disorders. With the characterization of the subtypes of receptors in purinergic signaling, i.e. the P1 (adenosine), P2X (ion channel) and P2Y (G protein-coupled), more attentions were paid to the pathophysiology and therapeutic potential of purinergic signaling in central nervous system disorders. Alzheimer’s disease (AD) is a progressive and deadly neurodegenerative disease that is characterized by memory loss, cognitive impairment and dementia. However, as drug development aimed to prevent or control AD follows a series of failures in recent years, more researchers focused on the neuroprotection-related mechanisms such as purinergic signaling in AD patients to find a potential cure. This article reviews the recent discoveries of purinergic signaling in AD, summaries the potential agents as modulators for the receptors of purinergic signaling in AD related research and treatments. Thus, our paper provided an insight for purinergic signaling in the development of anti-AD therapies.


Dementia ◽  
2018 ◽  
pp. 147130121882096
Author(s):  
Thomas A Ala ◽  
GaToya Simpson ◽  
Marshall T Holland ◽  
Vajeeha Tabassum ◽  
Maithili Deshpande ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1802
Author(s):  
Enrique Armijo ◽  
George Edwards ◽  
Andrea Flores ◽  
Jorge Vera ◽  
Mohammad Shahnawaz ◽  
...  

Alzheimer’s disease (AD) is the most common type of dementia in the elderly population. The disease is characterized by progressive memory loss, cerebral atrophy, extensive neuronal loss, synaptic alterations, brain inflammation, extracellular accumulation of amyloid-β (Aβ) plaques, and intracellular accumulation of hyper-phosphorylated tau (p-tau) protein. Many recent clinical trials have failed to show therapeutic benefit, likely because at the time in which patients exhibit clinical symptoms the brain is irreversibly damaged. In recent years, induced pluripotent stem cells (iPSCs) have been suggested as a promising cell therapy to recover brain functionality in neurodegenerative diseases such as AD. To evaluate the potential benefits of iPSCs on AD progression, we stereotaxically injected mouse iPSC-derived neural precursors (iPSC-NPCs) into the hippocampus of aged triple transgenic (3xTg-AD) mice harboring extensive pathological abnormalities typical of AD. Interestingly, iPSC-NPCs transplanted mice showed improved memory, synaptic plasticity, and reduced AD brain pathology, including a reduction of amyloid and tangles deposits. Our findings suggest that iPSC-NPCs might be a useful therapy that could produce benefit at the advanced clinical and pathological stages of AD.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 190
Author(s):  
Nikita Martens ◽  
Melissa Schepers ◽  
Na Zhan ◽  
Frank Leijten ◽  
Gardi Voortman ◽  
...  

We recently found that dietary supplementation with the seaweed Sargassum fusiforme, containing the preferential LXRβ-agonist 24(S)-saringosterol, prevented memory decline and reduced amyloid-β (Aβ) deposition in an Alzheimer’s disease (AD) mouse model without inducing hepatic steatosis. Here, we examined the effects of 24(S)-saringosterol as a food additive on cognition and neuropathology in AD mice. Six-month-old male APPswePS1ΔE9 mice and wildtype C57BL/6J littermates received 24(S)-saringosterol (0.5 mg/25 g body weight/day) (APPswePS1ΔE9 n = 20; C57BL/6J n = 19) or vehicle (APPswePS1ΔE9 n = 17; C57BL/6J n = 19) for 10 weeks. Cognition was assessed using object recognition and object location tasks. Sterols were analyzed by gas chromatography/mass spectrometry, Aβ and inflammatory markers by immunohistochemistry, and gene expression by quantitative real-time PCR. Hepatic lipids were quantified after Oil-Red-O staining. Administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice without affecting the Aβ plaque load. Moreover, 24(S)-saringosterol prevented the increase in the inflammatory marker Iba1 in the cortex of APPswePS1ΔE9 mice (p < 0.001). Furthermore, 24(S)-saringosterol did not affect the expression of lipid metabolism-related LXR-response genes in the hippocampus nor the hepatic neutral lipid content. Thus, administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice independent of effects on Aβ load and without adverse effects on liver fat content. The anti-inflammatory effects of 24(S)-saringosterol may contribute to the prevention of cognitive decline.


Author(s):  
Jorge Oliveira ◽  
Pedro Gamito ◽  
Teresa Souto ◽  
Rita Conde ◽  
Maria Ferreira ◽  
...  

The use of ecologically oriented approaches with virtual reality (VR) depicting instrumental activities of daily living (IADL) is a promising approach for interventions on acquired brain injuries. However, the results of such an approach on dementia caused by Alzheimer’s disease (AD) are still lacking. This research reports on a pilot randomized controlled trial that aimed to explore the effect of a cognitive stimulation reproducing several IADL in VR on people with mild-to-moderate dementia caused by AD. Patients were recruited from residential care homes of Santa Casa da Misericórdia da Amadora (SCMA), which is a relevant nonprofit social and healthcare provider in Portugal. This intervention lasted two months, with a total of 10 sessions (two sessions/week). A neuropsychological assessment was carried out at the baseline and follow-up using established neuropsychological instruments for assessing memory, attention, and executive functions. The sample consisted of 17 patients of both genders randomly assigned to the experimental and control groups. The preliminary results suggested an improvement in overall cognitive function in the experimental group, with an effect size corresponding to a large effect in global cognition, which suggests that this approach is effective for neurocognitive stimulation in older adults with dementia, contributing to maintaining cognitive function in AD.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 157-158
Author(s):  
Benjamin Olivari ◽  
Christopher Taylor ◽  
Nia Reed ◽  
Lisa McGuire

Abstract Alzheimer’s disease and related dementias often begin with symptoms of mild memory loss, eventually leading to more severe cognitive impairment, functional impairment, and ultimately, death. Data from the Behavioral Risk Factor Surveillance System core questions related to chronic diseases and from the cognitive decline optional module on subjective cognitive decline (SCD) from the years 2015-2018 were aggregated across the participating 50 states, D.C., and Puerto Rico for this analysis. Among U.S. adults aged 65 years and older, only 39.8% (95%CI=37.6-42.1) of those experiencing SCD reported discussing their SCD symptoms with a healthcare provider. The prevalence of discussing SCD symptoms with a provider was higher among those with at least one chronic condition than among those with no chronic conditions. 30.7% (28.6-32.8) of those aged 65 years and older reported that their SCD led to functional limitations and 28.8% (26.5-31.2) needed assistance with day-to-day activities. For patients aged 65 years and older, Welcome to Medicare visits and Medicare Annual Wellness Visits are critically underutilized primary care access points. Primary care providers can manage chronic conditions, cognitive health, and initiate referrals for testing. Efforts to promote the use of toolkits and diagnostic codes that are available to primary care providers to initiate conversations about memory loss with patients may be utilized to improve detection, diagnosis, and planning for memory problems. Discussions may lead to earlier detection and diagnosis of cognitive impairment, such as Alzheimer’s disease, or other treatable conditions such as delirium or pressure in the brain and avoid costly hospitalizations.


Author(s):  
Sijia Wu ◽  
Mengyuan Yang ◽  
Pora Kim ◽  
Xiaobo Zhou

Abstract A-to-I RNA editing, contributing to nearly 90% of all editing events in human, has been reported to involve in the pathogenesis of Alzheimer’s disease (AD) due to its roles in brain development and immune regulation, such as the deficient editing of GluA2 Q/R related to cell death and memory loss. Currently, there are urgent needs for the systematic annotations of A-to-I RNA editing events in AD. Here, we built ADeditome, the annotation database of A-to-I RNA editing in AD available at https://ccsm.uth.edu/ADeditome, aiming to provide a resource and reference for functional annotation of A-to-I RNA editing in AD to identify therapeutically targetable genes in an individual. We detected 1676 363 editing sites in 1524 samples across nine brain regions from ROSMAP, MayoRNAseq and MSBB. For these editing events, we performed multiple functional annotations including identification of specific and disease stage associated editing events and the influence of editing events on gene expression, protein recoding, alternative splicing and miRNA regulation for all the genes, especially for AD-related genes in order to explore the pathology of AD. Combing all the analysis results, we found 108 010 and 26 168 editing events which may promote or inhibit AD progression, respectively. We also found 5582 brain region-specific editing events with potentially dual roles in AD across different brain regions. ADeditome will be a unique resource for AD and drug research communities to identify therapeutically targetable editing events. Significance: ADeditome is the first comprehensive resource of the functional genomics of individual A-to-I RNA editing events in AD, which will be useful for many researchers in the fields of AD pathology, precision medicine, and therapeutic researches.


2017 ◽  
Vol 32 (7) ◽  
pp. 418-428 ◽  
Author(s):  
Ioana-Miruna Balmus ◽  
Alin Ciobica

Alzheimer’s disease leads to progressive cognitive function loss, which may impair both intellectual capacities and psychosocial aspects. Although the current knowledge points to a multifactorial character of Alzheimer’s disease, the most issued pathological hypothesis remains the cholinergic theory. The main animal model used in cholinergic theory research is the scopolamine-induced memory loss model. Although, in some cases, a temporary symptomatic relief can be obtained through targeting the cholinergic or glutamatergic neurotransmitter systems, no current treatment is able to stop or slow cognitive impairment. Many potentially successful therapies are often blocked by the blood–brain barrier since it exhibits permeability only for several classes of active molecules. However, the plant extracts’ active molecules are extremely diverse and heterogeneous regarding the biochemical structure. In this way, many active compounds constituting the recently tested plant extracts may exhibit the same general effect on acetylcholine pathway, but on different molecular ground, which can be successfully used in Alzheimer’s disease adjuvant therapy.


2020 ◽  
Vol 11 (1) ◽  
pp. 391-401
Author(s):  
Jiang Cheng ◽  
Guowei Wang ◽  
Na Zhang ◽  
Fang Li ◽  
Lina Shi ◽  
...  

AbstractBackground:Alzheimer’s disease (AD) is an ultimately fatal, degenerative brain disease in the elderly people. In the current work, we assessed the defensive capability of isovitexin (IVX) through an intracerebroventricular injection of streptozotocin (STZ)-induced AD mouse model.Methods:Mice were separated into four cohorts: sham-operated control mice; STZ-intoxicated Alzheimer’s mice; IVX cohort, IVX + STZ; and Ant-107 cohort, antagomiR-107 + IVX/STZ as in the IVX cohort.Results:The outcomes indicated that IVX administration ameliorated spatial memory loss and blunted a cascade of neuro-noxious episodes – including increased amyloid-beta (Aβ) and degraded myelin basic protein burden, neuroinflammation (represented by elevated caspase-1, TNF-α and IL-6 levels) and autophagic dysfunction (represented by altered LC3-II, Atg7 and beclin-1 expressions) – via the inhibition of PI3K/Akt/mTOR signalling axis. We considered the question of whether the epigenetic role of microRNA-107 (miR-107) has any impact on these events, by using antagomiR-107.Conclusion:This probing underscored that miR-107 could be a pivotal regulatory button in the activation of molecular signals linked with the beneficial autophagic process and anti-inflammatory activities in relation to IVX treatment. Hence, this report exemplifies that IVX could guard against Aβ toxicity and serve as an effectual treatment for patients afflicted with AD.


Sign in / Sign up

Export Citation Format

Share Document