scholarly journals Study of the influence of negative temperatures on biomass accumulation and cell viability of callus and cell aggregates of Rhodiola rosea L.

2021 ◽  
Author(s):  
Tatiana Calugaru-Spataru ◽  

As a result of determining the resistance to the action of different negative temperatures of callus cells and cellular aggregates of Rhodiola rosea, it was shown that after exposure of callus to -8oC, only 52% of the cells survived. In the case of exposing the experimental variant of R. rosea cell aggregates to -8oC, the value of cell viability was 68%. This suggests that the frost tolerance of cell aggregates is higher than that of callus cells, which indicates that the stress factor to be tolerated is higher, the lower the de-gree of organization of the biological system.

Author(s):  
Regina MALINAUSKAITĖ ◽  
Edvardas KAZLAUSKAS

Plant physiological processes related to plant growth and development strongly depends on the environmental stress factors. Response to stress appears as a complex of different reactions with a particular feedback on plants. Influence of ionized alkaline water to sow lentil physiological reactions was investigated by analyzing changes in biomass accumulation, assimilates partitioning and pigment content. Ionized alkaline water at (8.4 pH) was applied during 6–7 and 8–9 leaves development stage. According to experiment results, at the latest stage of investigation, ionized alkaline water increased lens dry matter content more than 1.44 times. During experimental time increase in dry matter content was 13.96 %, when control plants gained only 3.47 %. Ionized alkaline water application resulted in 8.58 % significantly higher root dry matter content compare to control variant. Results of our experiment revealed the significant effect of ionized alkaline water to chlorophyll content. Chlorophyll a and chlorophyll b in control plants had a tendency to decline, whereas in experimental variant with ionized water, increase in pigment concentration was observed.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 124
Author(s):  
Anna A. Erst ◽  
Anastasia A. Petruk ◽  
Andrey S. Erst ◽  
Denis A. Krivenko ◽  
Nadezhda V. Filinova ◽  
...  

Rhodiola rosea L. is a valuable medicinal plant with adaptogenic, neuroprotective, antitumor, cardioprotective, and antidepressant effects. In this study, design of experiments methodology was employed to analyze and optimize the interacting effects of mineral compounds (concentration of NO3− and the ratio of NH4+ to K+) and two plant growth regulators [total 6-benzylaminopurine (BAP) and α-naphthylacetic acid (NAA) concentration and the ratio of BAP to NAA] on the growth and the production of total phenolic compounds (TPCs) in R. rosea calluses. The overall effect of the model was highly significant (p < 0.0001), indicating that NH4+, K+, NO3−, BAP, and NAA significantly affected growth. The best callus growth (703%) and the highest production of TPCs (75.17 mg/g) were achieved at an NH4+/K+ ratio of 0.33 and BAP/NAA of 0.33, provided that the concentration of plant growth regulators was 30 μM and that of NO3− was ≤40 mM. According to high-performance liquid chromatography analyses of aerial parts (leaves and stems), in vitro seedlings and callus cultures of R. rosea contain no detectable rosarin, rosavin, rosin, and cinnamyl alcohol. This is the first report on the creation of an experiment for the significant improvement of biomass accumulation and TPC production in callus cultures of R. rosea.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 676 ◽  
Author(s):  
Corneliu Tanase ◽  
Ruxandra Ștefănescu ◽  
Diana Gabriela Gheorghieș ◽  
Loredana Dandu ◽  
Adrian Nisca ◽  
...  

The use of bioactive compounds can act in growth stimulation and also influence the biosynthesis of the metabolites in plants. The aim of this paper is to assess the influence of the beech (Fagus sylvatica L.) bark crude extract (BBCE) on the growth and development of sage (Salvia officinalis L.) plants. Special attention was given to the analysis of volatile oil obtained from the sage treated plant. Thus, the biological activity of BBCE was assessed by determining the germination capacity, biomass accumulation, histo-anatomical aspects, and photoassimilatory pigment accumulation, quantitative, and qualitative sage volatile oil analysis. The results show stimulation of the biomass and photoassimilatory pigment accumulation. The mesophyll thickness and the vascular tissue surface are smaller in the treated variants, compared to the control. On the other hand, the amount of volatile oil was significantly higher in the treated plants. In the experimental variants, an increase in the quantity of eucalyptol, camphor, camphene, and α-caryophyllene is observed. The amount of eucalyptol increased in the experimental variant, with about 82%, compared to the control. BBCE could be properly used as natural bioregulators because according to our results seems to improve the yield of the sage crop. The results of this research have the potential to contribute greatly to ecological agricultural production.


2020 ◽  
Author(s):  
Peng Guo ◽  
Xizhe Liu ◽  
Penghui Zhang ◽  
Zhongyuan He ◽  
Liru Wen ◽  
...  

Abstract Background: The single-cell platform provided revolutionary way to study cellular biology. Technologically, a sophistic protocol of isolating qualified single cells would be key to deliver to single-cell platform, which requires high cell viability, high cell yield and low content of cell aggregates or doublets. For musculoskeletal tissues, like bone, cartilage, nucleus pulposus, tendons, etc. as well as their pathological state, which are tense and dense, it’s full of challenge to efficiently and rapidly prepare qualified single-cell suspension. Conventionally, enzymatic dissociation methods were wildly used but lack of quality control. In the present study, we designed specific enzymatic treatment protocols for several human pathological musculoskeletal tissues, including degenerated nucleus pulposus, ossifying posterior longitudinal ligament and knee articular cartilage with osteoarthritis, aiming to rapidly and efficiently harvest qualified single-cell suspensions to meet the requirements of single-cell RNA-sequencing (scRNA-seq).Results: The single-cell suspensions from human degenerated nucleus pulposus and ossifying posterior longitudinal ligaments were both qualified after systematic quality control. Bioanalyzer trace showed expected cDNA size distribution of the scRNA-seq library. A clear separation of cellular barcodes from background partitions were verified by the barcode-rank plot after sequencing. However, we failed to obtain eligible samples from articular cartilage due to low cell viability and excessive cell aggregates and doublets. Conclusions: In conclusion, we provided rapid and efficient single-cell isolation protocols for human degenerated nucleus pulposus and ossifying posterior longitudinal ligament, which could be applied for scRNA-seq. More efforts will be made on improving the protocols for human articular cartilage.


2017 ◽  
Vol 83 (19) ◽  
Author(s):  
Inês N. Silva ◽  
Marcelo J. Ramires ◽  
Lisa A. Azevedo ◽  
Ana R. Guerreiro ◽  
Andreia C. Tavares ◽  
...  

ABSTRACT LysR-type transcriptional regulators (LTTRs) are the most commonly found regulators in Burkholderia cepacia complex, comprising opportunistic pathogens causing chronic respiratory infections in cystic fibrosis (CF) patients. Despite LTTRs being global regulators of pathogenicity in several types of bacteria, few have been characterized in Burkholderia. Here, we show that gene ldhR of B. multivorans encoding an LTTR is cotranscribed with ldhA encoding a d-lactate dehydrogenase and evaluate their implication in virulence traits such as exopolysaccharide (EPS) synthesis and biofilm formation. A comparison of the wild type (WT) and its isogenic ΔldhR mutant grown in medium with 2% d-glucose revealed a negative impact on EPS biosynthesis and on cell viability in the presence of LdhR. The loss of viability in WT cells was caused by intracellular acidification as a consequence of the cumulative secretion of organic acids, including d-lactate, which was absent from the ΔldhR mutant supernatant. Furthermore, LdhR is implicated in the formation of planktonic cellular aggregates. WT cell aggregates reached 1,000 μm in size after 24 h in liquid cultures, in contrast to ΔldhR mutant aggregates that never grew more than 60 μm. The overexpression of d-lactate dehydrogenase LdhA in the ΔldhR mutant partially restored the formed aggregate size, suggesting a role for fermentation inside aggregates. Similar results were obtained for surface-attached biofilms, with WT cells producing more biofilm. A systematic evaluation of planktonic aggregates in Burkholderia CF clinical isolates showed aggregates in 40 of 74. As CF patients' lung environments are microaerophilic and bacteria are found as free aggregates/biofilms, LdhR and LdhA might have central roles in adapting to this environment. IMPORTANCE Cystic fibrosis patients often suffer from chronic respiratory infections caused by several types of microorganisms. Among them are the Burkholderia cepacia complex bacteria, which cause progressive deterioration of lung function that, in some patients, might develop into fatal necrotizing pneumoniae with bacteremia, known as “cepacia syndrome.” Burkholderia pathogenesis is multifactorial as they express several virulence factors, form biofilms, and are highly resistant to antimicrobial compounds, making their eradication from the CF patients' airways very difficult. As Burkholderia is commonly found in CF lungs in the form of cell aggregates and biofilms, the need to investigate the mechanisms of cellular aggregation is obvious. In this study, we demonstrate the importance of a d-lactate dehydrogenase and a regulator in regulating carbon overflow, cellular aggregates, and surface-attached biofilm formation. This not only enhances our understanding of Burkholderia pathogenesis but can also lead to the development of drugs against these proteins to circumvent biofilm formation.


Author(s):  
Glenn M. Cohen ◽  
Radharaman Ray

Retinal,cell aggregates develop in culture in a pattern similar to the in ovo retina, forming neurites first and then synapses. In the present study, we continuously exposed chick retinal cell aggregates to a high concentration (1 mM) of carbamylcholine (carbachol), an acetylcholine (ACh) analog that resists hydrolysis by acetylcholinesterase (AChE). This situation is similar to organophosphorus anticholinesterase poisoning in which the ACh level is elevated at synaptic junctions due to inhibition of AChE, Our objective was to determine whether continuous carbachol exposure either damaged cholino- ceptive neurites, cell bodies, and synaptic elements of the aggregates or influenced (hastened or retarded) their development.The retinal tissue was isolated aseptically from 11 day embryonic White Leghorn chicks and then enzymatically (trypsin) and mechanically (trituration) dissociated into single cells. After washing the cells by repeated suspension and low (about 200 x G) centrifugation twice, aggregate cell cultures (about l0 cells/culture) were initiated in 1.5 ml medium (BME, GIBCO) in 35 mm sterile culture dishes and maintained as experimental (containing 10-3 M carbachol) and control specimens.


2014 ◽  
Vol 84 (3-4) ◽  
pp. 0140-0151 ◽  
Author(s):  
Thilaga Rati Selvaraju ◽  
Huzwah Khaza’ai ◽  
Sharmili Vidyadaran ◽  
Mohd Sokhini Abd Mutalib ◽  
Vasudevan Ramachandran ◽  
...  

Glutamate is the major mediator of excitatory signals in the mammalian central nervous system. Extreme amounts of glutamate in the extracellular spaces can lead to numerous neurodegenerative diseases. We aimed to clarify the potential of the following vitamin E isomers, tocotrienol-rich fraction (TRF) and α-tocopherol (α-TCP), as potent neuroprotective agents against glutamate-induced injury in neuronal SK-N-SH cells. Cells were treated before and after glutamate injury (pre- and post-treatment, respectively) with 100 - 300 ng/ml TRF/α-TCP. Exposure to 120 mM glutamate significantly reduced cell viability to 76 % and 79 % in the pre- and post-treatment studies, respectively; however, pre- and post-treatment with TRF/α-TCP attenuated the cytotoxic effect of glutamate. Compared to the positive control (glutamate-injured cells not treated with TRF/α-TCP), pre-treatment with 100, 200, and 300 ng/ml TRF significantly improved cell viability following glutamate injury to 95.2 %, 95.0 %, and 95.6 %, respectively (p < 0.05).The isomers not only conferred neuroprotection by enhancing mitochondrial activity and depleting free radical production, but also increased cell viability and recovery upon glutamate insult. Our results suggest that vitamin E has potent antioxidant potential for protecting against glutamate injury and recovering glutamate-injured neuronal cells. Our findings also indicate that both TRF and α-TCP could play key roles as anti-apoptotic agents with neuroprotective properties.


Sign in / Sign up

Export Citation Format

Share Document