scholarly journals Annealing Effect on the SnSe Nanocrystalline Thin Films and the Photovoltaic Properties of the p-SnSe/n-Si Heterojunction Solar Cells

2021 ◽  
Vol 8 (2) ◽  
pp. 41-49
Author(s):  
Ghuzlan Sarhan Ahmed ◽  
Bushra K. H. Al-Maiyaly ◽  
Seham Hasan Salman ◽  
Rajaa Faisal Rabeea

A thin film of SnSe were deposited by thermal evaporation technique on 400 ±20 nm thick glass substrates of these films were annealed at different temperatures (100,150,200 ⁰C), The effect of annealing on the characteristics of the nano crystalline SnSe thin films was investigated using XRD, UV-VIS absorption spectroscopy, Atomic Force Microscope (AFM), and Hall effect measurements. The results of X-ray displayed that all the thin films have polycrystalline and orthorhombic structure in nature, while UV-VIS study showed that the SnSe has direct band gap of nano crystalline and it is changed from 60.12 to 94.70 nm with increasing annealing temperature. Hall effect measurements showed that all the films have a positive Hall coefficient, which means that the conductivity of the films is p-type. The conductivity of SnSe films was increased with increasing annealing temperatures (except that at 200⁰C). The I-V characteristics under illumination for the "p-SnSe/n-Si” solar cell displayed an increase in conversion efficiency with increasing annealing temperature from R.T to 150⁰C, while at 200⁰C, this efficiency was decreased. The measurements of the C-V characteristics displayed that all junctions were abrupt type. It is clear from C-V measurements that the capacitance decreased with increasing reverse bias voltage which leads to an increase in the depletion width.

2017 ◽  
Vol 890 ◽  
pp. 295-298 ◽  
Author(s):  
Ngamnit Wongcharoen ◽  
Thitinai Gaewdang

SnS thin films were deposited by thermal evaporation in vacuum on glass slide substrate. The as-deposited films were thermally annealed in a controlled N2 atmosphere with annealing temperature in the range 100-500°C for 30 min. XRD, AFM, UV-VIS transmittance, FTIR and Hall effect measurements were used for characterization the as-deposited and annealed films. Based on the XRD patterns, the as-deposited and annealed films were indentified as the orthrombic structure. The band gap was found to increase from 1.15 to 1.42 eV when the annealing temperature increased from 100 to 500°C. The lowest resistivity and highest carrier concentration values were observed to be 12.95 Ω.cm and 1.98×1016 cm-3 on the films annealed at 100 and 200°C, respectively.


2012 ◽  
Vol 9 (4) ◽  
pp. 1992-1999
Author(s):  
Vinu. T. Vadakel ◽  
C. S. Menon

Vacuum deposited 2,3,9,10,16,17,23,24-octakis (octyloxy) phthalocyanine (H2PcOC8) thin films on glass substrates have exhibited a change on their surface morphology with the post deposition annealing temperature under normal atmosphere. These films have been characterized by optical absorptions and Scanning Electron Microscopy. SEM images also have shown nano-rod like structures for the samples annealed at different temperatures. The variation of optical band gap with annealing temperature is determined. The direct and allowed optical band gap energy has been evaluated from the α2versus hυ plots. The electrical conductivity of the films at various heat treated samples are also studied. The activation energies are determined from the Arrhenius plots of lnσ versus 1000/T . It shows variation with the annealing temperature.


Author(s):  
Ramazan Karsliog˘lu ◽  
Hatem Akbulut ◽  
Ahmet Alp

Tin oxide thin films were grown by chemical vapor deposition (CVD) on glass substrates at atmospheric pressure (AP) and different temperatures of 400, 500 and 600 °C. The deposition times were also altered from 15 to 60 minutes with 15 minutes time intervals to investigate the effect of deposition time. A horizontal home-made reactor was used for the deposition from SnCl2 precursors with flowing pure oxygen at a rate 5 ccpm. The structure was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) facilities to reveal the deposition mechanisms and crystalline structures. Energy-dispersive spectroscopy (EDS) was conducted to understand the elemental surface composition of the thin films produced. It was detected that the morphology and the oxide structure were changed with deposition time and temperature. The optical and electrical properties were also studied to reveal a relationship between physical properties and production parameters of the resultant thin films.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 239
Author(s):  
Monzer Maarouf ◽  
Muhammad Baseer Haider ◽  
Qasem Ahmed Drmosh ◽  
Mogtaba B. Mekki

Titanium nitride thin films were grown on Si(001) and fused silica substrates by radio frequency reactive magnetron sputtering. Post-growth annealing of the films was performed at different temperatures from 300 °C to 700 °C in nitrogen ambient. Films annealed at temperatures above 300 °C exhibit higher surface roughness, smaller grain size and better crystallinity compared to the as-grown film. Bandgap of the films decreased with the increase in the annealing temperature. Hall effect measurements revealed that all the films exhibit n-type conductivity and had high carrier concentration, which also increased slightly with the increase in the annealing temperature. A detailed depth profile study of the chemical composition of the film was performed by x-ray photoelectron spectroscopy confirming the formation of Ti-N bond and revealing the presence of chemisorbed oxygen in the films. Annealing in nitrogen ambient results in increased nitrogen vacancies and non-stoichiometric TiN films.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 180 ◽  
Author(s):  
Yeong-Maw Hwang ◽  
Cheng-Tang Pan ◽  
Ying-Xu Lu ◽  
Sheng-Rui Jian ◽  
Huang-Wei Chang ◽  
...  

The correlations between the microstructure and nanomechanical properties of a series of thermal annealed Co thin films were investigated. The Co thin films were deposited on glass substrates using a magnetron sputtering system at ambient conditions followed by subsequent annealing conducted at various temperatures ranging from 300 °C to 800 °C. The XRD results indicated that for annealing temperature in the ranged from 300 °C to 500 °C, the Co thin films were of single hexagonal close-packed (hcp) phase. Nevertheless, the coexistence of hcp-Co (002) and face-centered cubic (fcc-Co (111)) phases was evidently observed for films annealed at 600 °C. Further increasing the annealing temperature to 700 °C and 800 °C, the films evidently turned into fcc-Co (111). Moreover, significant variations in the hardness and Young’s modulus are observed by continuous stiffness nanoindentation measurement for films annealed at different temperatures. The correlations between structures and properties are discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1802
Author(s):  
Dan Liu ◽  
Peng Shi ◽  
Yantao Liu ◽  
Yijun Zhang ◽  
Bian Tian ◽  
...  

La0.8Sr0.2CrO3 (0.2LSCO) thin films were prepared via the RF sputtering method to fabricate thin-film thermocouples (TFTCs), and post-annealing processes were employed to optimize their properties to sense high temperatures. The XRD patterns of the 0.2LSCO thin films showed a pure phase, and their crystallinities increased with the post-annealing temperature from 800 °C to 1000 °C, while some impurity phases of Cr2O3 and SrCr2O7 were observed above 1000 °C. The surface images indicated that the grain size increased first and then decreased, and the maximum size was 0.71 μm at 1100 °C. The cross-sectional images showed that the thickness of the 0.2LSCO thin films decreased significantly above 1000 °C, which was mainly due to the evaporation of Sr2+ and Cr3+. At the same time, the maximum conductivity was achieved for the film annealed at 1000 °C, which was 6.25 × 10−2 S/cm. When the thin films post-annealed at different temperatures were coupled with Pt reference electrodes to form TFTCs, the trend of output voltage to first increase and then decrease was observed, and the maximum average Seebeck coefficient of 167.8 µV/°C was obtained for the 0.2LSCO thin film post-annealed at 1100 °C. Through post-annealing optimization, the best post-annealing temperature was 1000 °C, which made the 0.2LSCO thin film more stable to monitor the temperatures of turbine engines for a long period of time.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kooliyankal Naseema ◽  
Kaniyamkandy Ribin ◽  
Nidiyanga Navya ◽  
Prasoon Prasannan

AbstractNano crystalline zinc sulfide thin films were deposited onto glass substrates by chemical bath deposition method. One of the samples was annealed at 300 °C for 2 h in air using a muffle furnace. The prepared thin films were investigated by X-ray diffraction (XRD), UV–visible spectroscopy (UV–vis), photoluminescence spectroscopy (PL), scanning electron microscopy (SEM) and Raman spectroscopy (FT-R) studies before and after annealing. The analysis confirmed the thermal-induced anion substitution and conversion of ZnS crystal to ZnO wurtzite crystal. XRD pattern showed that these films were phase pure and polycrystalline in nature. Optical band gap was found to be 3.86 eV for ZnS and 3.21 eV for ZnO. The films prepared by this simple, low-cost technique are suitable for photovoltaic and optoelectronic applications.


Sign in / Sign up

Export Citation Format

Share Document