Studies on Evaluation and Mean Performance Associated with Yield, Quality and Pest and Disease Incidence in Eggplant (Solanum melongena L.)

Author(s):  
S. Ramesh Kumar ◽  
T. Arumugam ◽  
S. Balakrishan
2020 ◽  
Vol 27 (2) ◽  
pp. 93-101
Author(s):  
GULWAIZ AKHTER ◽  
TABREIZ AHMAD KHAN

Three Orobanche spp. viz., O. aegyptiaca, O. cernua and O. ramosa were found to be associated with S. melongena in Banda district. However, the concomitant infestation of O. aegyptiaca with O. cernua and/ or O. ramosa in brinjal plants was not noticed. Moreover some of brinjal fields showed the infestation of O. aegyptiaca with either O. cernua or O. ramose. The infestation of O. aegyptiaca in brinjal plant was recorded in all the twenty examined localities. The highest and lowest disease incidence in brinjal plants was found in Chilla and Gazipur, respectively. Whereas, the maximum and minimum frequency of occurrence of O. aegyptiaca was found in Kurrahi and Palhari. Out of twenty localities, the infestation of O. cernua in brinjal was observed in fourteen localities. The greatest disease incidence and frequency of occurrence of O. cernua were recorded Jakhni and Gazipur. Whereas, the lowest disease incidence and frequency of occurrence of O. cernua were noticed in Hardauli and Jamwara, respectively. Moreover, the infestation of O. ramosa in brinjal plants was found in only nine localities of Banda district. The highest and lowest disease incidence due to O. ramosa in brinjal was recorded in Gazipur and Lakhanpur, respectively. However, maximum frequency of occurrence of O. ramosa was found in Jaspura and the minimum in Mahua. In entire Banda district, 68.10% of the surveyed fields were infested with broomrapes. The highest disease incidence and frequency of occurrence of O. aegyptiaca were recorded in brinjal followed by O. cernua and O. ramosa.


2017 ◽  
Vol 8 (2) ◽  
pp. 238-243 ◽  
Author(s):  
A-K. Mahlein ◽  
M. T. Kuska ◽  
S. Thomas ◽  
D. Bohnenkamp ◽  
E. Alisaac ◽  
...  

The detection and identification of plant diseases is a fundamental task in sustainable crop production. An accurate estimate of disease incidence, disease severity and negative effects on yield quality and quantity is important for precision crop production, horticulture, plant breeding or fungicide screening as well as in basic and applied plant research. Particularly hyperspectral imaging of diseased plants offers insight into processes during pathogenesis. By hyperspectral imaging and subsequent data analysis routines, it was possible to realize an early detection, identification and quantification of different relevant plant diseases. Depending on the measuring scale, even subtle processes of defence and resistance mechanism of plants could be evaluated. Within this scope, recent results from studies in barley, wheat and sugar beet and their relevant foliar diseases will be presented.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jinjie Hu ◽  
Qian Zhou ◽  
Chaohui Shi ◽  
Yexin Ke ◽  
Shun Xiao ◽  
...  

Eggplant (Solanum melongena L.) is one of the most popular vegetable in China. In July 2019, a serious stem canker disease of eggplant cv. Hangqieyiha has been found in commercial fields in Pingnan County, Fujian Province. The disease incidence ranged from 38% to 72%. The symptoms were found on stems but not on fruits. At first the lesions are small, more or less circular, later becoming elongated, blackish-brown lesions, eventually containing pycnidia. When stem girdling occurs, the shoot above the infected area wilts and dries up. The teleomorph of the fungus has not been encountered in sympotomatic stem. Single-conidial isolate has been obtained by using routine fungal-isolation methods and single-spore purification technique. The fungus was cultivated on potato dextrose agar (PDA), incubated under 12h/12h cycles of light and darkness until sporulation to determine. The fungus initially produced white fluffy aerial hyphae, forming relatively dense concentric pattern colony, which subsequently exhibited yellow-green pigmentation. Pycnidias had globose locules and prominent beaks, which immersed in medium, black, solitary, discoid or irregular. Conidiophores were colorless, separated, branched, 10.0 to 20.0 × 1.0 to 2.5 μm. Alpha-conidia were single-celled, ellipsoidal to fusiform, guttulate, 5.4 to 8.7 × 1.5 to 3.2 μm. Beta-conidia were found occasionally in older stock cultures, hyaline, filiform, hamate, and 17.0 to 26.9 × 0.86 to 1.23 μm. Based on these morphological characters, the fungus was identified as Phomopsis longicolla (Hobbs et al., 1985). The rDNA-ITS of the isolate FAFU01 was amplified with primers ITS1/ ITS4 (TCCGTAGGTGAACCTGCGG/ TCCTCCGCTTATTGATATGC) (White et al., 1990),and A 578 bp sequence obtained (GenBank Accession No. MW380387 ) was 96% to 98.3% identical to the known sequence of P. longicolla or Diaporthe longicolla in GenBank. For further confirmation, P. longicolla specific primers Phom.I /Phom.II (GAGCTCGCCACTAGATTTCAGGG/GGCGGCCAACCAAACTCTTGT) (Zhang et al., 1997) were used and a 337-bp amplification product was obtained which was previously reported only for P. longicolla, whereas no product was amplified from control. Based on these morphological and molecular characters, the fungus was identified as P. longicolla. In greenhouse tests, each of 35-day-old plants of eggplant cv. Hangqieyihao was maintained in 30-cm-diameter pot. Healthy stem on the plants was wounded by pinpricking. Both wounded and non-wounded stems were inoculated respectively with mycelial plugs (4 mm in diameter) from a 7-day-old PDA culture or PDA medium plugs as controls, with six replicates. The plants were covered with plastic bags to maintain high relative humidity for two days. Four days after inoculation, the plugs were washed from the stems. Thirty-five days after inoculation, canker lesions and small, black pycnidias, which were similar to those in the field, were observed on the surface of non-wounded and wounded healthy stems inoculated with pathogen, whereas all the control stems remained healthy. The fungi was re-isolated from the infected stems of plants and was further confirmed with the species-specific primers. These results confirmed the fungus’s pathogenicity. This is the first report of P. longicolla causing stem canker in eggplant in Fujian Province, China.


Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 689-689
Author(s):  
A. Nasehi ◽  
J. B. Kadir ◽  
M. Nasr Esfahani ◽  
F. Mahmodi ◽  
H. Ghadirian ◽  
...  

In 2011, a severe gray leaf spot was observed on eggplant (Solanum melongena) in major eggplant growing areas in Malaysia, including the Pahang, Johor, and Selangor states. Disease incidence was >70% in severely infected areas of about 150 ha of eggplant greenhouses and fields examined. Symptoms initially appeared as small (1 to 5 mm diameter), brownish-black specks with concentric circles on the lower leaves. The specks then coalesced and developed into greyish-brown, necrotic lesions, which also appeared on the upper leaves. Eventually, the leaves senesced and were shed. Tissue cut from the edges of leaf spots were surface-sterilized in 1% NaOCl for 2 min, rinsed in sterilized water, dried, and incubated on potato dextrose agar (PDA). Fungal colonies were greyish green to light brown, and produced a yellow pigment. Single, muriform, brown, oblong conidia formed at the terminal end of each conidiophore, were each 21.6 to 45.6 μm long and 11.5 to 21.6 μm wide, and contained 2 to 7 transverse and 1 to 4 longitudinal septa. The conidiophores were tan to light brown and ≤220 μm long. Based on these morphological criteria, 25 isolates of the fungus were identified as Stemphylium solani (1). To produce conidia in culture, 7-day-old single-conidial cultures were established on potato carrot agar (PCA) and V8 juice agar media under an 8-h/16-h light/dark photoperiod at 25°C (4). Further confirmation of the identification was obtained by molecular characterization in which fungal DNA was extracted and the internal transcribed spacer (ITS) region of ribosomal DNA amplified using primers ITS5 and ITS4 (2), followed by direct sequencing. A BLAST search in the NCBI database revealed that the sequence was 99% identical with published ITS sequences for two isolates of S. solani (Accession Nos. AF203451 and HQ840713). The amplified ITS region was deposited in GenBank (JQ736023). Pathogenicity testing of a representative isolate was performed on detached, 45-day-old eggplant leaves of the cv. 125066-X under laboratory conditions. Four fully expanded leaves (one wounded and two non-wounded leaflets/leaf) were placed on moist filter paper in petri dishes, and each leaflet inoculated with a 20-μl drop of a conidial suspension containing 1 × 105 conidia/ml in sterilized, distilled water (3). The leaves were wounded by applying pressure to leaf blades with the serrated edge of forceps. Four control leaves were inoculated similarly with sterilized, distilled water. Inoculated leaves were incubated in humid chambers at 25°C with 95% RH and a 12-h photoperiod. After 7 days, symptoms similar to those observed in the original fields developed on both wounded and non-wounded inoculated leaves, but not on control leaves, and S. solani was reisolated consistently from the symptoms using the same method as the original isolations. Control leaves remained asymptomatic and the fungus was not isolated from these leaves. The pathogenicity testing was repeated with similar results. To our knowledge, this is the first report of S. solani on eggplant in Malaysia. References: (1) B. S. Kim et al. Plant Pathol. J. 20:85, 2004. (2) Y. R. Mehta et al. Curr. Microbiol. 44:323, 2002. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) E. G. Simmons. CBS Biodiv. Series 6:775, 2007.


1998 ◽  
Vol 78 (3) ◽  
pp. 429-436 ◽  
Author(s):  
P. E. Jedel ◽  
J. H. Helm ◽  
P. A. Burnett

Intraspecific mixtures may be a means of enhancing the genetic variability of modern crops while retaining the advantages of yield, quality, and stress tolerance of modern cultivars. Two- and three-way barley (Hordeum vulgare L.) mixtures of the cultivars Abee, Noble, Tukwa and Virden, were studied at Botha, Lacombe and Olds, Alberta, from 1992 to 1994. Treatments consisted of the four cultivars as monocrops and in 6 two-way and 3 three-way mixtures grown at a seeding rate of 250 seeds m−2. Tukwa as a monocrop had the highest rank and best stability for grain yield of all the treatments. Grain yields of the mixtures usually fell between the yields of the respective monocrops and were often better than the weighted mean yield of the monocrops indicating that many mixtures were more effective at using resources than the monocrops. Of the mixtures, Tukwa:Noble, Tukwa:Abee:Virden and Noble:Virden had the best rankings and stability for grain yield. Test weights, kernel weights, percent thins, lodging, disease incidence and protein content of the mixtures were intermediate to those of the monocrops. Mixtures containing the two-rowed cultivar Abee had higher test weight and protein content than mixtures composed of only six-rowed cultivars. Lodging and disease ratings were lower for the mixtures composed of only six-rowed cultivars than those with Abee. In these intraspecific barley mixtures, Virden was often the most competitive cultivar while Tukwa was the least. Competitive ability was not associated with yield potential, tillering, or row-type. Key words: Hordeum vulgare L., mixtures, yield, quality, stress tolerance


2012 ◽  
Vol 89 (5) ◽  
pp. 363-373 ◽  
Author(s):  
Meghan A. Curless ◽  
Keith A. Kelling ◽  
Phillip E. Speth ◽  
Walter R. Stevenson ◽  
R. Vaughan James

Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 566-566 ◽  
Author(s):  
C. Zheng ◽  
Z.-H. Liu ◽  
S.-S. Tang ◽  
D. Lu ◽  
X.-Y. Huang

Eggplant (Solanum melongena L.) is an important vegetable crop that has significant economic value in northern regions of China, especially in Liaoning Province. In April 2013, a leaf spot was discovered on the eggplant cultivar 706 in ten 1-ha commercial greenhouses in Huludao, Liaoning Province, with 30% of the eggplants infected, resulting in reduced eggplant yield and quality. By July 2013, disease incidence was 35%. Spots were found mainly on the leaves. At the early stage of infection, small, chlorotic spots appeared on leaves and gradually expanded into brown, irregular spots with a diameter of 1 to 7 mm. Dark green mold developed in the spots on both sides of the leaves at high humidity, and the spots led to leaf yellowing and defoliation. Conidiophores in the lesions were straight or slightly flexuous with 1 to 7 septa, brown and smooth, with typical swellings at the junction of septa, and 45 to 670 × 3.0 to 5.3 μm. Conidia were oval or obpyriform with a smooth surface, brown or dark brown, with 0 to 2 septa and 5.5 to 14.8 × 2.5 to 4.0 μm. The pathogen was consistent morphologically with Cladosporium oxysporum (1). To identify the pathogen, leaf pieces (3 to 5 mm2) taken from the edge of lesions so that each leaf section included both infected and healthy leaf tissue, were surface-disinfested in 75% ethanol for 30 s, then transferred to a 0.1% aqueous mercuric chloride solution for 30 to 60 s, and rinsed with sterilized water three times. The sections were cultured on potato dextrose agar (PDA) at 25°C in the dark for 7 days. Three pure cultures were obtained from single spores. The conidia on PDA were oval or obpyriform, and 5.4 to 14.7 × 2.4 to 4.2 μm with 0 to 1 septa, and were smaller than the conidia examined directly from infected eggplant leaves. Two isolates were grown on synthetic nutrient agar (SNA) in slide cultures. The conidiophores on SNA were straight or slightly flexuous with swellings at the junctions of septa. On the grounds of these morphological characteristics, the pathogen was identified as C. oxysporum (1,3). For DNA extraction, cultures were grown in potato dextrose broth and the internal transcribed spacer (ITS) region of ribosomal DNA (rNDA) was amplified using primers ITS1 and ITS4 (2). Sequence analysis showed that the ITS sequences of the two isolates were 99% identical to that of C. oxysporum (GenBank Accession No. EF029816). Two isolates were tested for pathogenicity on eggplant using 1 × 107 conidia/ml in sterilized water atomized onto each of six 7-week-old plants of the cultivar Xi'an Green Eggplant. Sterilized water was applied similarly to another six plants as the control treatment. The plants were incubated at 25°C with 85% relative humidity for 8 to 10 days. After 10 days, light brown, irregular spots were found on inoculated leaves, whereas no symptoms were observed on control plants. The pathogen was re-isolated from lesions on inoculated plants but not from control plants. The re-isolates were confirmed to be C. oxysporum based on morphological characteristics. The pathogenicity test was repeated and the same results obtained. Therefore, the pathogen causing leaf spot on eggplant in these greenhouses was identified as C. oxysporum. This is the first report of C. oxysporum causing leaf spot on greenhouse eggplant in China. C. oxysporum is a known pathogen of pepper and tomato. Additional studies are needed to provide management recommendations for this pathogen on Solanaceae crops. References: (1) K. Bensch et al. Stud. Mycol. 67:1, 2010. (2) Q. Li and G. Wang. Microbiol. Res. 164:233, 2009. (3) W. T. H. Peregrine and K. B. Ahmad. Phytopathol. Pap. 27:1, 1982.


Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 1093-1093 ◽  
Author(s):  
J. P. Wilson ◽  
W. Williamson

Eggplant (Solanum melongena) and other Solanum spp. are aecial hosts for Puccinia substriata var. indica, the rust pathogen of pearl millet (Pennisetum glaucum) (2). Although long suspected to be important in epidemic initiation (1), natural infection of eggplant has never been documented in the United States. All previous observations have been the result of deliberate inoculations. Eggplant (cv. Santana) seedlings with sporulating aecia were identified in the inventory of a vegetable transplant producer near Ty Ty, GA, on 22 April 1997. Flats of seedlings were being grown in a greenhouse with adjustable sides for creating an open-air environment for temperature control. Disease incidence was approximately 1.5% in the lot of 10,000 seedlings. Lesions were found most frequently on the first true leaf or less frequently on cotyledons. Aeciospores from 15 arbitrarily selected leaves were used to inoculate pearl millet seedlings in the greenhouse. Each leaf was used to inoculate pearl millet cultivars with no known resistance, and with the Rr1 resistance gene. Infection was obtained on all cultivars with no resistance genes, verifying pathogen identification. Fourteen isolates infected pearl millet with Rr1, revealing that virulence to Rr1 was common in this sample. The nearest point source of exposed pearl millet debris that could serve as a source of basidiospores was located approximately 9.7 km away from the eggplant. References: (1) H. D. Wells. Plant Dis. Rep. 62:469, 1978. (2) J. P. Wilson et al. Plant Dis. 80:806, 1996.


Plant Disease ◽  
2020 ◽  
Author(s):  
Muhammad Subhan Shafique ◽  
Luqman Amrao ◽  
Saba Saeed ◽  
Muhammad Zeshan Ahmed ◽  
Salman Ghuffar ◽  
...  

Eggplant (Solanum melongena L.) is a popular vegetable that is grown in both tropical and subtropical regions all year long. The crop is cultivated on small family farms and is a good source of income for resource-limited farmers in Pakistan. In early May 2019, leaf spots on eggplant (cv. Bemisaal) were observed in an experimental field (31°26'14.0"N 73°04'23.4"E) at the University of Agriculture, Faisalabad, Pakistan. Early symptoms were small, circular, brown, necrotic spots uniformly distributed on leaves. The spots gradually enlarged and coalesced into large, nearly circular or irregularly shaped spots that could be up to 3 cm in length. The center of the spots was light tan, surrounded by a dark brown ring, a chlorotic halo, and tended to split in the later developmental stages. Disease incidence was approximately 35% in the infected field. The causal agent of this disease was isolated consistently by plating surface sterilized (1% NaOCl) sections of symptomatic leaf tissue onto potato dextrose agar (PDA). After 6 days incubation at 25°C with a 12-h photoperiod, fungal colonies had round margins and the cottony mycelia were dark olivaceous with a mean diameter of 7.5 cm. For conidial production, the fungus was grown on potato carrot agar (PCA) and V8 agar media under a 16-h/8-h light/ dark photoperiod at 25°C. Conidiophores were septate, light to olive golden brown with a conidial scar, from which conidia were produced. Conidia were borne singly or in short chains and were obpyriform to obclavate, measured 29 ± 4.8 × 13.25 ± 2.78 μm (n=30) with zero to three longitudinal and two to six transversal septa. The morphological characters matched those of Alternaria alternata (Fr.) Keisel (Simmons et al. 2007). DNA was extracted using the DNAzol reagent (Thermo Fisher Scientific MA, USA). For molecular identification, internal transcribed spacer (ITS) region between ITS1 and ITS2, actin gene (β-Actin), translation elongation factor (TEF-1α) gene, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene of two representative isolates (JLUAF1 and JLUAF2) were amplified with primers ITS1/ITS4 (White et al. 1990), β-Actin 512 F/783 R, EF1-728F/-986R (Carbone et al. 1999), and gpd1/gpd2 (Berbee et al. 1999), respectively. The sequences were deposited in GenBank (accession nos. MT228734.1 and MT228735.1 for ITS; MT260151.1 and MT260152.1 for β-Actin, MT260163.1 and MT260164.1, for TEF-1a, and MT260157.1 and MT260158.1 for GAPDH). BLASTn analysis of these sequences showed 100% identity with the sequences of A. alternata for ITS rDNA, β-Actin, TEF-1α, and GAPDH, respectively. Based on the morphological characters and DNA sequences, the leaf spot isolates of eggplant were identified as A. alternata. To confirm the pathogenicity on eggplant, six-week old healthy potted eggplants of cv. Bemisaal were sprayed at the true leaf stage with conidial suspensions of A. alternata (106 conidia/ml; obtained from 1-week-old cultures) amended with 0.1% (vol/vol) of Tween 20 until runoff (1.5 to 2 ml per plant) using an atomizer in the greenhouse. Three plants were inoculated with each of the two isolates (JLUAF1 and JLUAF2), whereas three control plants were sprayed with sterile distilled water amended with 0.1% Tween 20. The plants were incubated at 25 ± 2°C in a greenhouse, and the experiment was conducted twice. After 10 days of inoculation, each isolate induced leaf spots which were similar to typical spots observed in the field, whereas the control plants remained symptomless. The fungus was re-isolated from symptomatic tissues. Re-isolated fungal cultures were morphologically and molecularly identical to A. alternata, thus fulfilling Koch’s postulates. Previously, A. alternata has been reported to cause leaf spots on eggplant in India (Raina et al. 2018). To our knowledge, this is the first report of A. alternata causing leaf spot on eggplant in Pakistan. The disease could represent a threat for eggplant crops due to its increasing cultivation. It is important to develop disease management strategies for Alternaria alternata causing leaf spot of Eggplant in Pakistan.


2012 ◽  
Vol 150 (5) ◽  
pp. 619-629 ◽  
Author(s):  
N. C. BONAMICO ◽  
M. A. DI RENZO ◽  
M. A. IBAÑEZ ◽  
M. L. BORGHI ◽  
D. G. DÍAZ ◽  
...  

SUMMARYMal de Río Cuarto (MRC) is a devastating disease that reduces yield, quality and economic value of maize in Argentina. The objective of the present study was to map quantitative trait loci (QTL) for reactions to MRC from recombinant inbred lines (RILs). Reactions to the endemic MRC disease were evaluated in 145 advanced F2:6 lines, derived from a cross between a resistant (BLS14) and a susceptible (Mo17) line, at four environments in the temperate semi-arid crop region of Argentina. The evaluations of disease score (SCO), disease incidence (INC) and disease severity (SEV) were carried out on each individual RIL. Low heritability estimates were found across environments for SCO (0·23), INC (0·27) and SEV (0·22). A genetic map of simple sequence repeat (SSR) markers covering a total genetic distance of 1019 cM was built. QTL for resistance to MRC disease were found on different maize chromosomes. Four significant QTL, each explaining between 0·08 and 0·14 of the total phenotypic variation, were located on chromosomes 1, 4 and 10. Two QTL specific to the INC, and one specific to SEV, may be involved in different mechanisms of resistance to MRC. Although MRC reaction is highly affected by environmental effects, the QTL×environment interaction for INC and SEV was low. Most of the QTL for reaction to MRC detected in the present study were mapped to regions of the maize genome containing genes conferring resistance to various pathogens. The significant QTL across environments are good candidates to select for MRC resistance.


Sign in / Sign up

Export Citation Format

Share Document