scholarly journals BIOMASS AND ENERGY YIELD OF LEGUMINOUS TREES CULTIVATED IN AMAZONAS

FLORESTA ◽  
2015 ◽  
Vol 45 (4) ◽  
pp. 705 ◽  
Author(s):  
Karen Cristina Pires da Costa ◽  
Roberval Monteiro Bezerra de Lima ◽  
Marciel José Ferreira

AbstractEnergy forests emerge as an alternative to fossil fuels for energy production. The good performance of these forests should consider the selection of fast-growing species, high biomass productivity and energy yield. The aim was to investigate growth and energy yield of Acacia auriculiformis and Acacia mangium in a short-rotation plantation in the Amazonas. The energy yield was determined on 12 trees per species, from the results of biomass, calorific value and basic density. When 9 years-old, A. mangium had the highest growth rates in height (1.9 m yr-1) and DBH (2.5 cm yr-1). The greatest biomass productivity was observed in A. mangium (33.4 Mg ha-1 yr-1), which was 84% higher than A. auriculiformis (18.1 Mg ha-1 yr-1). Basic density (0.54 g cm-3) and calorific value (4,400 kcal kg-1) showed no significant differences between species. The energy yield of A. mangium (1,317 Gcal ha-1) was twice as of A. auriculiformis (684 Gcal ha-1). A. mangium has better energy performance, compared to the A. auriculiformis, and therefore could the most recommended for the formation of energy forests in disturbed areas in the state of Amazonas. ResumoBiomassa e produtividade energética de leguminosas arbóreas cultivadas no Amazonas. As florestas energéticas representam alternativa à dependência do uso de combustíveis fósseis para a produção de energia. O bom desempenho dessas florestas deve considerar a seleção de espécies de rápido crescimento, alta produtividade em biomassa e rendimento energético. O objetivo foi investigar o crescimento e a produtividade energética de Acacia auriculiformis e Acacia mangium em plantios florestais de curta rotação no Amazonas. A produtividade energética foi determinada em 12 árvores de cada espécie, a partir dos resultados de biomassa, poder calorífico e densidade básica. Aos 9 anos, A. mangium teve as maiores taxas de crescimento em altura (1,9 m ano-1) e DAP (2,5 cm ano-1). A maior produtividade de biomassa foi observada em A. mangium (33,4 Mg ha-1 ano-1), que foi 84% superior a de A. auriculiformis (18,1 Mg ha-1 ano-1). A densidade básica (0,54 g cm-3) e o poder calorífico (4.400 kcal kg-1) não apresentaram diferenças significativas entre as espécies. A produtividade energética de A. mangium (1.317 Gcal ha-1) foi duas vezes maior que a de A. auriculiformis (684 Gcal ha-1). Acacia mangium tem melhor desempenho energético quando comparada à A. auriculiformis, sendo portanto mais recomendada para a formação de florestas energéticas em áreas alteradas no estado do Amazonas.Palavras-chave: Acacia mangium; Acacia auriculiformis; plantios de curta rotação.

2018 ◽  
Vol 53 (7) ◽  
pp. 791-799 ◽  
Author(s):  
Helio Tonini ◽  
Dalton Roberto Schwengber ◽  
Marina Moura Morales ◽  
Ciro Augusto de Souza Magalhães ◽  
Jane Maria Franco de Oliveira

Abstract: The objective of this work was to assess the effect of spacing on the growth, biomass allocation, and wood quality for energy purposes of Acacia magium. A randomized complete block design was carried out with three replicates and five treatments consisting of trees planted at different spacings: 2.0x2.0, 2.5x2.5, 3.0x2.0, 3.0x2.5, and 3.0x3.0 m. At 67 months after planting, the following species parameters were evaluated: performance (mortality, diameter growth, height, bark factor, and bark and biomass volume yield) and wood energy quality (basic density, higher-calorific value, ash, fixed carbon, and volatile materials) through the analysis of variance. Plant spacing did not affect volume and biomass production per hectare nor wood quality for energy purposes. The widest spacing (3.0x3.0 m) provides better individual growth, and the narrowest one (2.0x2.0 m) produces smaller trees, but with the highest percentage of dry biomass in the trunk, and can show the best energy potential at a rotation age from 40 to 50 months.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2051 ◽  
Author(s):  
Cristina Eimil-Fraga ◽  
Xurxo Proupín-Castiñeiras ◽  
Jose Antonio Rodríguez-Añón ◽  
Roque Rodríguez-Soalleiro

Eight poplar genotypes grown in a short rotation forest plantation established in an acid soil in South Europe were sampled at the age of 7 years to determine the energy properties regarding thermochemical conversion. The goal was to address the effect of selection of genotypes or shoot size at harvest on the energy quality of biomass. Between 34 and 50 biomass samples were obtained for each genotype: three disks were systematically sampled along the stem and were pooled together with a subsample of leafless branches representative of the biomass share of this component. Several energy properties were determined: higher calorific value, net calorific value, fresh moisture content, basic density, ash, volatile matter, fixed carbon content and elemental composition. Genotype had a significant effect on most of these properties, and the balsam genotypes displayed superior quality parameters and also higher biomass yield than the Euramerican genotypes. As a covariate, shoot basal diameter had a significant effect on the moisture content, basic density, ash content and on the concentrations of the elements N, K, Ca, Mg, S, Na and C. It was concluded that genotypes with low nutrient requirements planted at low density (<8000 cuttings ha−1) and harvested at a long enough rotation (7 years) produce good yields and high chip quality. Poplar short rotation crops can be grown to produce chips of A2 quality for non-industrial heating use (according to UNE-EN ISO 17225-4), able to be combusted in domestic thermal facilities of <1 MWth power.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (6) ◽  
pp. 353-359 ◽  
Author(s):  
PETER W. HART ◽  
RICARDO B. SANTOS

Eucalyptus plantations have been used as a source of short fiber for papermaking for more than 40 years. The development in genetic improvement and clonal programs has produced improved density plantations that have resulted in fast growing, increased fiber volume eucalypts becoming the most widely used source of short fibers in the world. High productivity and short rotation times, along with the uniformity and improved wood quality of clonal plantations have attracted private industry investment in eucalypt plantations. Currently, only a handful of species or hybrids are used in plantation efforts. Many more species are being evaluated to either enhance fiber properties or expand the range of eucalypt plantations. Eucalyptus plantations are frequently planted on nonforested land and may be used, in part, as a means of conserving native forests while allowing the production of high quality fiber for economic uses. Finally, eucalypt plantations can provide significant carbon sinks, which may be used to help offset the carbon released from burning fossil fuels. The development and expansion of eucalypt plantations represents a substantial revolution in pulp and paper manufacturing.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Made Dirgantara ◽  
Karelius Karelius ◽  
Marselin Devi Ariyanti, Sry Ayu K. Tamba

Abstrak – Biomassa merupakan salah satu energi terbarukan yang sangat mudah ditemui, ramah lingkungan dan cukup ekonomis. Keberadaan biomassa dapat dimaanfaatkan sebagai pengganti bahan bakar fosil, baik itu minyak bumi, gas alam maupun batu bara. Analisi diperlukan sebagai dasar biomassa sebagai energi seperti proksimat dan kalor. Analisis terpenting untuk menilai biomassa sebagai bahan bakar adalah nilai kalori atau higher heating value (HHV). HHV secara eksperimen diukur menggunakan bomb calorimeter, namun pengukuran ini kurang efektif, karena memerlukan waktu serta biaya yang tinggi. Penelitian mengenai prediksi HHV berdasarkan analisis proksimat telah dilakukan sehingga dapat mempermudah dan menghemat biaya yang diperlukan peneliti. Dalam makalah ini dibahas evaluasi persamaan untuk memprediksi HHV berdasarkan analisis proksimat pada biomassa berdasarkan data dari penelitian sebelumnya. Prediksi nilai HHV menggunakan lima persamaan yang dievaluasi dengan 25 data proksimat biomassa dari penelitian sebelumnya, kemudian dibandingkan berdasarkan nilai error untuk mendapatkan prediksi terbaik. Hasil analisis menunjukan, persamaan A terbaik di 7 biomassa, B di 6 biomassa, C di 6 biomassa, D di 5 biomassa dan E di 1 biomassa.Kata kunci: bahan bakar, biomassa, higher heating value, nilai error, proksimat  Abstract – Biomass is a renewable energy that is very easy to find, environmentally friendly, and quite economical. The existence of biomass can be used as a substitute for fossil fuels, both oil, natural gas, and coal. Analyzes are needed as a basis for biomass as energy such as proximate and heat. The most critical analysis to assess biomass as fuel is the calorific value or higher heating value (HHV). HHV is experimentally measured using a bomb calorimeter, but this measurement is less effective because it requires time and high costs. Research on the prediction of HHV based on proximate analysis has been carried out so that it can simplify and save costs needed by researchers. In this paper, the evaluation of equations is discussed to predict HHV based on proximate analysis on biomass-based on data from previous studies. HHV prediction values using five equations were evaluated with 25 proximate biomass data from previous studies, then compared based on error value to get the best predictions. The analysis shows that Equation A predicts best in 7 biomass, B in 6 biomass, C in 6 biomass, D in 5 biomass, and E in 1 biomass. Key words: fuel, biomass, higher heating value, error value, proximate 


2020 ◽  
Vol 3 (1) ◽  
pp. 93
Author(s):  
Iulian Constantin Dănilă

Short rotation forestry (SRF) provides an important supply of biomass for investors in this area. In the NE (North-East) part of Romania at the present time are installed over 800 Ha of this kind of crops. The SRF enjoys the support through environmental policies, in relation to climate change and the provisions of the Kyoto Protocol to reduce the concentration of CO2 in the atmosphere. A precise estimate of biomass production is necessary for the sustainable planning of forest resources and for the exchange of energy in ecosystems. The use of the terrestrial laser scanner (TLS) in estimating the production of above ground wood biomass (AGWB) of short rotation forestry (SRF) brings an important technological leap among indirect (non-destructive) methods. TLS technology is justified when destructive methods become difficult to implement, and allometric equations do not provide accurate information. The main purpose of the research is to estimate the biomass productivity on tree parts in short rotation forestry with TLS technology. Measuring the hybrid poplars crops by TLS may have the following consequences: (1) Higher accuracy of the estimate of biomass production in the SRF; (2) cost and time effective measurements over the biomass of tree parts; (3) new and validated allometric equations for SRF in NE Romania; (4) solid instrument for industry to estimate biomass. TLS technology gives accurate estimates for DBH, tree height and location, as much as the volume on segments, commercial volume or crown volume can be determined. The accuracy of these values depends on the original scan data and their co-registration. The research will contribute to the development of knowledge in the field of hybrid crops.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Reza Wahyudi ◽  
Muhammad Ivanto ◽  
Murti Juliandari

Dependence on the provision of electricity using fossil fuels is a major energy supply problem in Indonesia. Therefore, it is necessary to provide new and renewable alternative fuels that are effective, efficient, and environmentally friendly. One of the alternative fuels is bagasse biomass. The purpose of this study was to determine the amount of bagasse produced by sellers of sugarcane juice drink in Pontianak City, in order to determine the estimated value of bagasse. The research method used was direct data collection and laboratory testing . Based on the results of the study, the number of vendors of sugarcane juice beverages producing bagasse was 169. Of this amount, produce bagasse that can reach 1,030.9 kg/day. Based on the test results, the estimated moisture content of bagasse was 3.28%, ash content was 0.77%, and carbon remained at 7.65%. So, if converted with the test results of the calorific value of bagasse and made into briquettes bagasse (bio briquettes), which is 19,648 kJ/kg with a density of 0.416 kg/m3, then converted into a potential calorific value of 242,849,280 J/year.


2016 ◽  
Vol 20 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Magdalena Kachel-Jakubowska ◽  
Artur Kraszkiewicz ◽  
Marta Krajewska

AbstractCurrently, many countries are establishing goals for substituting fossil fuels with biomass. This global trade in solid biofuels, which is to some extent already taking place, will have a major impact not only on other commodity markets like vegetable oils or animal fodder but also on the global land use change and on environmental impacts. It demonstrates the strong but complex link between biofuels production and the global food market, it unveils policy measures as the main drivers for production and use of biofuels and it analyzes various sustainability indicators and certification schemes for biofuels with respect to minimizing the adverse effects of biofuels. Biomass is seen as a very promising option for fulfilling the environmental goals defined by the European Commission as well as various national governments. We have measured selected physicochemical properties of several the most common oilseeds and the residue materials in the form of cakes, moisture, fat, heat of combustion, the calorific value and ash content. The results showed that the considered plants and waste derived therefrom can be a good energy source. Examples include sunflower oilcake, sesame, pumpkin and rapeseed cake, for which the calorific value amounted to respectively: 28.17; 27.77; 26.42 and 21.69 MJ·kg−1.


2017 ◽  
Vol 41 (1) ◽  
Author(s):  
Delmar Santin ◽  
Marcelino Breguez Gonçalves Sobrinho ◽  
Angélica de Cássia Oliveira Carneiro ◽  
Eliziane Luiza Benedetti ◽  
Nairam Félix de Barros

ABSTRACT In mate crop, the commercial part consists of leaves and thin branches, while the large branches (LB) are considered unused residues and left in the field, although they may have potential for use as energy. The objective of this paper was to evaluate the influence of phosphorus fertilization and harvest interval in productivity of mate large branches and in their physical and energetic properties, as well as in derived briquettes. In a seven-year-old plantation, doses of 0, 20, 40, 80, 160 and 320 kg.ha-1 of P2O5 were applied considering harvest intervals of 12, 18 and 24 months. Dry mass, average diameter, P content, and physical and energetic properties of LB were determined. With LB, after its transformation into particles and briquetting, physical and energetic properties were determined, as well as P availability in soil. The phosphorus fertilization increased LB productivity in larger harvest intervals, increasing the amount of energy produced per unit of area, but did not change basic density and gross calorific value of wood. Mate harvest intervals did not affect the apparent density and calorific value of briquettes produced by LB. LB harvested at intervals of 18 and 24 months produced wood with higher basic density and gross calorific value. LB or briquettes have adequate energetic and physical properties, being technically a plant residue with great potential for use as energy.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 463 ◽  
Author(s):  
Ali Nawaz Kumbhar ◽  
Meilin He ◽  
Abdul Razzaque Rajper ◽  
Khalil Ahmed Memon ◽  
Muhammad Rizwan ◽  
...  

The decline in fossil fuel reserves has forced researchers to seek out alternatives to fossil fuels. Microalgae are considered to be a promising feedstock for sustainable biofuel production. Previous studies have shown that urea is an important nitrogen source for cell growth and the lipid production of microalgae. The present study investigated the effect of different concentrations of urea combined with kelp waste extract on the biomass and lipid content of Chlorella sorokiniana. The results revealed that the highest cell density, 20.36 × 107 cells−1, and maximal dry biomass, 1.70 g/L, were achieved in the presence of 0.5 g/L of urea combined with 8% kelp waste extract. Similarly, the maximum chlorophyll a, b and beta carotenoid were 10.36 mg/L, 7.05, and 3.01 mg/L, respectively. The highest quantity of carbohydrate content, 290.51 µg/mL, was achieved in the presence of 0.2 g/L of urea and 8% kelp waste extract. The highest fluorescence intensity, 40.05 × 107 cells−1, and maximum total lipid content (30%) were achieved in the presence of 0.1 g/L of urea and 8% kelp waste extract. The current study suggests that the combination of urea and kelp waste extract is the best strategy to enhance the biomass and lipid content in Chlorella sorokiniana.


Sign in / Sign up

Export Citation Format

Share Document