Chapter 38: Hydrothermal Gold Deposition in Epithermal, Carlin, and Orogenic Deposits

2020 ◽  
pp. 823-845
Author(s):  
Stuart F. Simmons ◽  
Benjamin M. Tutolo ◽  
Shaun L.L. Barker ◽  
Richard J. Goldfarb ◽  
François Robert

Abstract Epithermal, Carlin, and orogenic Au deposits form in diverse geologic settings and over a wide range of depths, where Au precipitates from hydrothermal fluids in response to various physical and chemical processes. The compositions of Au-bearing sulfidic hydrothermal solutions across all three deposit types, however, are broadly similar. In most cases, they comprise low-salinity waters, which are reduced, have a near-neutral pH, and CO2 concentrations that range from <4 to >10 wt %. Experimental studies show that the main factor controlling the concentration of Au in hydrothermal solutions is the concentration of reduced S, and in the absence of Fe-bearing minerals, Au solubility is insensitive to temperature. In a solution containing ~300 ppm H2S, the maximum concentration of Au is ~1 ppm, representing a reasonable upper limit for many ore-forming solutions. Where Fe-bearing minerals are being converted to pyrite, Au solubility decreases as temperature cools due to the decreasing concentration of reduced S. High Au concentrations (~500 ppb) can also be achieved in strongly oxidizing and strongly acidic chloride solutions, reflecting chemical conditions that only develop during intense hydrolytic leaching in magmatic-hydrothermal high-sulfidation epithermal environments. Gold is also soluble at low to moderate levels (10–100 ppb) over a relatively wide range of pH values and redox states. The chemical mechanisms which induce Au deposition are divided into two broad groups. One involves achieving states of Au supersaturation through perturbations in solution equilibria caused by physical and chemical processes, involving phase separation (boiling), fluid mixing, and pyrite deposition via sulfidation of Fe-bearing minerals. The second involves the sorption of ionic Au on to the surfaces of growing sulfide crystals, mainly arsenian pyrite. Both groups of mechanisms have capability to produce ore, with distinct mineralogical and geochemical characteristics. Gold transport and deposition processes in the Taupo Volcanic Zone, New Zealand, show how ore-grade concentrations of Au can accumulate by two different mechanisms of precipitation, phase separation and sorption, in three separate hydrothermal environments. Phase separation caused by flashing, induced by depressurization and associated with energetic fluid flow in geothermal wells, produces sulfide precipitates containing up to 6 wt.% Au from a hydrothermal solution containing a few ppb Au. Sorption on to As-Sb-S colloids produces precipitates containing tens to hundreds of ppm Au in the Champagne Pool hot spring. Sorption on to As-rich pyrite also leads to anomalous endowments of Au of up to 1 ppm in hydrothermally altered volcanic rocks occurring in the subsurface. In all of these environments, Au-undersaturated solutions produce anomalous concentrations of Au that match and surpass typical ore-grade concentrations, indicating that near-saturated concentrations of dissolved metal are not a prerequisite for generating economic deposits of Au. The causes of Au deposition in epithermal deposits are related to sharp temperature-pressure gradients that induce phase separation (boiling) and mixing. In Carlin deposits, Au deposition is controlled by surface chemistry and sorption processes on to rims of As-rich pyrite. In orogenic deposits, at least two Au-depositing mechanisms appear to produce ore; one involves phase separation and the other involves sulfidation reactions during water-rock interaction that produces pyrite; a third mechanism involving codeposition of Au-As in sulfides might also be important. Differences in the regimes of hydrothermal fluid flow combined with mechanisms of Au precipitation play an important role in shaping the dimensions and geometries of ore zones. There is also a strong link between Au-depositing mechanisms and metallurgical characteristics of ores.

2019 ◽  
Vol 489 (1) ◽  
pp. 708-713 ◽  
Author(s):  
Kaijun Li ◽  
Aigen Li ◽  
F Y Xiang

ABSTRACT The carriers of the still (mostly) unidentified diffuse interstellar bands (DIBs) have been a long-standing mystery ever since their first discovery exactly 100 yr ago. In recent years, the ubiquitous detection of a large number of DIBs in a wide range of Galactic and extragalactic environments has led to renewed interest in connecting the occurrence and properties of DIBs to the physical and chemical conditions of the interstellar clouds, with particular attention paid to whether the DIB strength is related to the shape of the interstellar extinction curve. To shed light on the nature and origin of the DIB carriers, we investigate the relation between the DIB strength and RV, the total-to-selective extinction ratio, which characterizes how the extinction varies with wavelength (i.e. the shape of the extinction curve). We find that the DIB strength and RV are not related if we represent the strength of a DIB by its reddening-normalized equivalent width (EW), in contrast to the earlier finding of an anticorrelation in which the DIB strength is measured by the extinction-normalized EW. This raises a fundamental question about the appropriate normalization for the DIB EW. We argue that the hydrogen column density is a more appropriate normalization than extinction and reddening.


The paper addresses the physical and chemical processes that can serve to immobilize waste radionuclides within the confines of an underground repository. These processes, which can be made largely independent of the chemical nature of the host rock, depend for their efficacy upon the maintenance of a very low flow rate of groundwater through the repository constituents. The very long-lived waste products, in particular the actinides, are very insoluble in water under conditions of alkalinity and oxygen potential that will exist in a repository when cement is used as a backfill or as a matrix for the waste. The same chemical conditions tend to favour a fairly long life for steel containers. The paper suggests how these factors may be used to immobilize wastes and draws some conclusions on the relative value of the various engineered features of a repository. Some natural geological analogues are explored as a means of assisting the extrapolation of waste behaviour over very long times.


1982 ◽  
Vol 104 (2) ◽  
pp. 121-129
Author(s):  
A. Hanafi ◽  
G. A. Karim

The physical and chemical processes that occur typically within and around an oil sand fragment are considered when the fragment is suddenly introduced into a hot, low-uniform velocity, gaseous oxidizing stream. In this analytical study, the extent of bitumen volatilization was obtained from a consideration of the simultaneous heat and mass transfer within spherical oil sand fragments combined with a simplified cracking scheme of the heavy oil and asphaltene into coke and distillate. The resulting system of equations together with the boundary conditions arising from subjecting the fragments to hot convective streams were solved using Laplace transformation. The transient concentrations of bitumen and temperature within the fragments were then obtained under a wide range of operating conditions. The similarity of the expression obtained for the extent of bitumen volatilization to the expression derived from simplified analysis, based on a dropletlike model, was demonstrated for cases where the transient effects within the fragments were considered to be negligible. The results of the theoretical analysis show relatively good agreement with their corresponding experimental values at high stream temperatures, while they showed relatively inferior agreement at low temperatures.


Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 737 ◽  
Author(s):  
Anatoly M. Sazonov ◽  
Sergey A. Silyanov ◽  
Oleg A. Bayukov ◽  
Yuriy V. Knyazev ◽  
Yelena A. Zvyagina ◽  
...  

The Mössbauer spectroscopy method was used to study the ligand microstructure of natural arsenopyrite (31 specimens) from the ores of the major gold deposits of the Yenisei Ridge (Eastern Siberia, Russia). Arsenopyrite and native gold are paragenetic minerals in the ore; meanwhile, arsenopyrite is frequently a gold carrier. We detected iron positions with variable distribution of sulfur and arsenic anions at the vertexes of the coordination octahedron {6S}, {5S1As}, {4S2As}, {3S3As}, {2S4As}, {1S5As}, {6As} in the mineral structure. Iron atoms with reduced local symmetry in tetrahedral cavities, as well as iron in the high-spin condition with a high local symmetry of the first coordination sphere, were identified. The configuration {3S3As} typical for the stoichiometric arsenopyrite is the most occupied. The occupation degree of other configurations is not subordinated to the statistic distribution and varies within a wide range. The presence of configurations {6S}, {3S3As}, {6As} and their variable occupation degree indicate that natural arsenopyrites are solid pyrite {6S}, arsenopyrite {3S3As}, and loellingite {6As} solutions, with the thermodynamic preference to the formation of configurations in the arsenopyrite–pyrite–loellingite order. It is assumed that in the variations as part of the coordination octahedron, the iron output to the tetrahedral positions and the presence of high-spin Fe cations depend on the physical and chemical conditions of the mineral formation. It was identified that the increased gold concentrations are typical for arsenopyrites with an elevated content of sulfur or arsenic and correlate with the increase of the occupation degree of configurations {5S1As}, {4S2As}, {1S5As}, reduction of the share of {3S3As}, and the amount of iron in tetrahedral cavities.


2016 ◽  
Vol 198 (19) ◽  
pp. 2589-2595 ◽  
Author(s):  
Yutaka Yawata ◽  
Jen Nguyen ◽  
Roman Stocker ◽  
Roberto Rusconi

The advent of microscale technologies, such as microfluidics, has revolutionized many areas of biology yet has only recently begun to impact the field of bacterial biofilms. By enabling accurate control and manipulation of physical and chemical conditions, these new microscale approaches afford the ability to combine important features of natural and artificial microbial habitats, such as fluid flow and ephemeral nutrient sources, with an unprecedented level of flexibility and quantification. Here, we review selected case studies to exemplify this potential, discuss limitations, and suggest that this approach opens new vistas into biofilm research over traditional setups, allowing us to expand our understanding of the formation and consequences of biofilms in a broad range of environments and applications.


1981 ◽  
Vol 11 ◽  
Author(s):  
David Savage ◽  
Jane E. RObbins

An essential component of any assessment of HLRW geological disposal options is the quantitative prediction of radionuclide release rates from the near-field over time spans of the order of 103-106 years. Fundamental to this assessment is the investigation of the interaction of potential wasteforms with groundwater under repository conditions of temperature, pressure, and groundwater flow-rate. Consequently, many studies world-wide have been initiated to examine the kinetics of wasteform dissolution over a wide range of physical and chemical conditions. Although these studies have provided a considerable amount of invaluable data on wasteform-fluid interactions, they have tended to focus on breakdown of the wasteform itself, and not on the fate of released waste components in the nearfield. For example, effects of saturation of species in solution, precipitation of secondary minerals or amorphous gels, and the effect of host rock chemistry on the products (solid and fluid) of waste-fluid interaction have largely been ignored or even specifically excluded in laboratory experiments. This is despite growing evidence from source term modelling studies which suggest that the above processes may well be the chief factors in governing rates of radionuclide release from the near-field, bearing in mind the limited availability of ground


2019 ◽  
Vol 486 (3) ◽  
pp. 331-335
Author(s):  
V. A. Simonov ◽  
A. A. Terleev ◽  
A. V. Kotlyarov ◽  
D. A. Tokarev ◽  
A. V. Kanygin

Complex researches of the pyrite Early Cambrian Kyzyl-Tashtyg deposit (East Tuva) have allowed to reconstruct paleohydrothermal systems, to find out physical and chemical conditions of hydrothermal processes, and also to establish features of existence of ancient hydrothermal biota in the operating zone of the solutions, participating at all stages of formation of ore-bearing structures, since influence of postmagmatic fluids and finishing low temperature hydrotherms. The representative data on biota has been received at studying of the objects, which were in a zone of influence of rather low temperature hydrothermal systems. In one cases findings of microorganisms are dated for basalt complexes, containing ore body, and in other cases the found fauna is connected with ferruginous-siliceous sediments. It has been found out that microorganisms in the tonsil cavities of basalts evolved at the temperatures nearby 110-140°С under the influence of hydrothermal solutions. Much lower temperatures (to 100 °С) existed at development of micro-fossils in the quartz-hematite hydrothermal constructions of Kyzyl-Tashtyg deposit.


Open Biology ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 210137
Author(s):  
Charlotte M. Fare ◽  
Alexis Villani ◽  
Lauren E. Drake ◽  
James Shorter

A guiding principle of biology is that biochemical reactions must be organized in space and time. One way this spatio-temporal organization is achieved is through liquid–liquid phase separation (LLPS), which generates biomolecular condensates. These condensates are dynamic and reactive, and often contain a complex mixture of proteins and nucleic acids. In this review, we discuss how underlying physical and chemical processes generate internal condensate architectures. We then outline the diverse condensate architectures that are observed in biological systems. Finally, we discuss how specific condensate organization is critical for specific biological functions.


The main goal of Solar System studies in Russia for the next 10-15 years is Mars and the Mars-94 project is the first stage of this long-term space programme. In October 1994 it is planned to launch a spacecraft with the following components onboard: an orbiter, two small autonomous stations to be landed on the surface of Mars and two penetrators to analyse the underlying surface layers. The main scientific objectives of this mission are to investigate the evolution and contemporary physics of Mars, and to make, using various methods, a wide range of comprehensive studies of those physical and chemical processes which took place in the past and which continue there now. The payload of the Mars-94 orbiter includes 23 scientific instruments to study the Martian surface, the inner structure of the planet, its atmosphere, and its plasma envelope, as well as instruments for astrophysical studies. The next stage of the programme is a mission to Mars in 1996. At present the Mars-96 project includes a spacecraft with an orbiter, a Martian rover, a balloon, penetrators and small stations. A short description of the scenario, payload, and scientific objectives of these missions is presented in this paper.


1992 ◽  
Vol 150 ◽  
pp. 365-370
Author(s):  
J.M.C. Rawlings

Molecular observations and models of the chemical processes in the ejecta of novae and supernovae are reviewed. Although only a few molecular species have been identified, the information that they give has provided great insight into the physical and chemical conditions. We now have quite a detailed understanding of the processes at work in both novae and supernovae.


Sign in / Sign up

Export Citation Format

Share Document