scholarly journals OpenCL accelerated GPU binary morphology image filters for ITK

2015 ◽  
Author(s):  
Zoltan Bardosi

Binary morphological operations are fundamental tools in image processing but the processing time scales with the number of pixels thus making them expensive operations on the CPU for larger 3D datasets that typically appear in medical imaging. Since erosion and dilatation are special neighborhood operators, each pixel in the output depends only on the neighborhood region which makes them fit for massive GPU parallelization. This document introduces a new ITK module that implements generic (OpenCL based) GPU accelerated binary morphology image filters for erosion and dilatation. The filter can be executed within the standard ITKGPU pipeline.

Author(s):  
Dalya Abdullah Anwer

Nowadays, image processing is widely utilized in many applications and for various purposes. Scholars proposed and suggested various techniques of image processing. The neural network is one of the main processing techniques, which is a state-of-art method. This paper aims to investigate neural network techniques in the field of image processing. Moreover, medical imaging, as well as increasing trends of utilizing digital medical imaging, has gained huge attention in the health sectors. In this regard, this paper focuses on the effect of neural networks in optimizing medical image processing. In this context, the early diagnosis and detection of the eye have an important role in the avoidance of visual impairment, because of the fact that around 45 million people have visual impairments all over the world, according to the World Health Organization. For this reason, the current paper introduces a new method based on image processing for vascular segmentation based on a morphological active contour. Then, segmentation carried out based on morphological operations, fuzzy c-means, and watershed transform. The output of such segmentation methods was given to conventional neural network. The optimized feature values are then extracted. The threshold value is set to compare these optimized feature values. From this, the best segmentation methods will be obtained.


Author(s):  
Srinivasan A ◽  
Sudha S

One of the main causes of blindness is diabetic retinopathy (DR) and it may affect people of any ages. In these days, both young and old ages are affected by diabetes, and the di abetes is the main cause of DR. Hence, it is necessary to have an automated system with good accuracy and less computation time to diagnose and treat DR, and the automated system can simplify the work of ophthalmologists. The objective is to present an overview of various works recently in detecting and segmenting the various lesions of DR. Papers were categorized based on the diagnosing tools and the methods used for detecting early and advanced stage lesions. The early lesions of DR are microaneurysms, hemorrhages, exudates, and cotton wool spots and in the advanced stage, new and fragile blood vessels can be grown. Results have been evaluated in terms of sensitivity, specificity, accuracy and receiver operating characteristic curve. This paper analyzed the various steps and different algorithms used recently for the detection and classification of DR lesions. A comparison of performances has been made in terms of sensitivity, specificity, area under the curve, and accuracy. Suggestions, future workand the area to be improved were also discussed.Keywords: Diabetic retinopathy, Image processing, Morphological operations, Neural network, Fuzzy logic. 


The mortality rate is increasing among the growing population and one of the leading causes is lung cancer. Early diagnosis is required to decrease the number of deaths and increase the survival rate of lung cancer patients. With the advancements in the medical field and its technologies CAD system has played a significant role to detect the early symptoms in the patients which cannot be carried out manually without any error in it. CAD is detection system which has combined the machine learning algorithms with image processing using computer vision. In this research a novel approach to CAD system is presented to detect lung cancer using image processing techniques and classifying the detected nodules by CNN approach. The proposed method has taken CT scan image as input image and different image processing techniques such as histogram equalization, segmentation, morphological operations and feature extraction have been performed on it. A CNN based classifier is trained to classify the nodules as cancerous or non-cancerous. The performance of the system is evaluated in the terms of sensitivity, specificity and accuracy


Author(s):  
Sujatha C. N

Blood group testing is one of the vital tasks in the area of medicine, in which it is very important during emergency situation before victim requires blood transfusion. Presently, the blood tests are conducted manually by laboratory staff members, which is time consuming process in the emergency situations. Blood group identification within shortest possible time without any human error is an important factor and very much essential. Image processing paves a way in determining blood type without human intervention. Images which are captured using high resolution microscopic camera during the blood slide test in the laboratory which are used for blood type evaluation. The image processing techniques which include thresholding and morphological operations are used. The blood image is separated into sample wise and blood type is decided based on the agglutination effects in those sample images. This project facilitates the identification of blood group even by common people who are unaware of the blood typing procedure.


SISTEMASI ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 96
Author(s):  
Khairullah Khairullah ◽  
Erwin Dwika Putra

AbstrakIdentifikasi kualitas buah cabai biasanya masih menggunakan cara visual secara langsung atau sortir secara manual oleh petani, dengan menggunakan sistem ini sering kali terjadi beberapa kesalahan setiap melakukan sortir yang disebabkan oleh petani yang melakukan sortir merasa terlalu lelah. Dengan menggunakan komputasi pengolahan citra digital, untuk melakukan identifikasi pengelompokan buah cabai yang matang dan mentah dapat membantu para petani, Teknik pengelompokan ini akan menggunakan metode pengelompokan berdasarkan warna. Metode pengelompokan tersebut sebelumnya akan dilakukan operasi morfologi pada citra yang telah diambil. Pendekatan operasi morfologi pada penelitian ini adalah Opening and Closing, pada operasi morfologi akan menghilangkan noise dan menebalkan objek dari inputan gambar. Metode Bacpropagatioan akan mengolah data latih sebanyak 10 data latih mendapatkan 6 iterasi perhitungan dan setelah diuji menggunakan data uji hasil yang didapatkan yaitu tingkat pengenalan rata-rat mendapatkan perhitungan sebanyak 7 iterasi metode Bacpropagation. Hasil dari penelitian ini juga dihitung menggunakan Confusion Matrix dimana nilai Precision 90%, Recall 74%, dan Accuracy 70%, maka dapat disimpulkan bahwa Operasi Morfologi dan Metode Backpropagation dapat digunakan untuk mengidentifikasi objek cabai.Kata Kunci: backpropagation, morfologi, identifikasi, opening and closing  AbstractIdentification of the quality of chili fruit is usually still using a visual way directly or sorting manually by farmers, using this system often occurs several errors, every sorting caused by farmers who do the sorting feel too tired. By using digital image processing computing, to identify the grouping of ripe and raw chili fruits can help farmers, this grouping technique will use a method of grouping based on color. The grouping method will previously perform morphological surgery on the image that has been taken. The morphological operation approach in this study is Opening and Closing, in morphological operations will eliminate noise and thicken objects from image input. Bacpropagatioan method will process training data as much as 10 training data get 6 iterations of calculations and after being tested using the test data obtained results that is the level of introduction of the average rat get a calculation of 7 iterations bacpropagation method. The results of this study were also calculated using Confusion Matrix where precision values of 90%, Recall 74%, and Accuracy 70%, it can be concluded that Morphological Operations and Backpropagation Method can be used to identify chili objects.Keywords: backpropagation, morfologi, identification, opening and closing


2021 ◽  
Vol 11 (1) ◽  
pp. 45-66
Author(s):  
Mete Durlu ◽  
Ozan Eski ◽  
Emre Sumer

In many geospatial applications, automated detection of buildings has become a key concern in recent years. Determination of building locations provides great benefits for numerous geospatial applications such as urban planning, disaster management, infrastructure planning, environmental monitoring. The study  aims to present a practical technique for extracting the buildings from high-resolution satellite images using color image segmentation and binary morphological image processing. The proposed method is implemented on satellite images of 4 different selected study areas of the city of Batikent, Ankara.  According to experiments conducted on the study areas, overall accuracy, sensitivity, and F1 values were computed to be on average, respectively. After applying morphological operations, the same metrics are calculated . The results show that the determination of urban buildings can be done more successfully with the suitable combination of morphological operations using rectangular structuring element. Keywords: Building Extraction; Colour Image Processing;Colour space conversion; Image Morphology; Remote Sensing        


Author(s):  
Robert J Marks II

Mathematical morphology, used extensively in image processing, tracks the support domains for the operation of convolution and deconvolution. Morphology is also important in the modelling of signals on time scales. Time scale theory provides a generalization tent under which the operations of discrete and continuous time signal and Fourier analysis rest as special cases. The time scale paradigm provides modelling under which a rich class of hybrid signals and systems can be analyzed. We begin with introductory material on mathematical morphology which is foundational to the development of time scale theory. The support of convolution is related to the operation of dilation in mathematical morphology. Mathematical morphology is most commonly associated with image processing. Applications of morphology was initially applied to binary black and white images by Matheron [966]. The field is richly developed [506, 578]. Here, we outline the fundamentals. In N dimensions, let X and H denote a set of vectors or, in the degenerate case of one dimension, a set of real numbers.


Author(s):  
Monia Mannai Mannai ◽  
Wahiba Ben Abdessalem Karâa

Over the years, there are different sorts of medical imaging have been developed. Where the most known are: X-ray, computed tomography (CT), nuclear medicine imaging (PET, SPECT), ultrasound and magnetic resonance imaging (MRI), each one has its different utilities. Various studies in biomedical informatics present a process to analyze images for extracting the hidden information which can be used after that. Image analysis combines several fields that are classified into two categories; the process of low-level, that requires very little information about the content image and the process of high-level, which may need information about the image content. The topic of this chapter is to introduce the different techniques for medical image processing and to present many research studies in this domain. It includes four stages, firstly, we introduce the most important medical imaging modalities and secondly, we outline the main process of biomedical image.


Sign in / Sign up

Export Citation Format

Share Document