scholarly journals Detection of virulence genes and antimicrobial resistance profiles of Escherichia coli isolates from raw milk and artisanal cheese in Southern Brazil

2019 ◽  
Vol 40 (1) ◽  
pp. 163 ◽  
Author(s):  
Leandro Parussolo ◽  
Ricardo Antônio Pilegi Sfaciotte ◽  
Karine Andrezza Dalmina ◽  
Fernanda Danielle Melo ◽  
Ubirajara Maciel Costa ◽  
...  

The serrano artisanal cheese is a typical product from South region of Brazil, which is produced by skilled cheesemakers using raw milk. The contamination of this food by Escherichia coli has a great impact on public health, since it could threat the consumers’ health. The study evaluated the presence of virulence genes, antimicrobial susceptibility profiles and bofilm-production ability of Escherichia coli isolates obtained from raw milk and artisanal cheese produced in Southern Brazil. A total of 117 isolates of E. coli were characterized by multiplex PCR to detect the following virulence genes: eae for enteropatogenic E. coli (EPEC), lt and st for enterotoxigenic E. coli (ETEC), stx for shiga toxin-producing E. coli (STEC), stx and eae for enterohemorrhagic E. coli (EHEC), ipaH for enteroinvasive E. coli (EIEC) and aggR for enteroaggregative E. coli (EAEC). In addition, antimicrobial susceptibility profile to 22 antimicrobial agents was also performed by disk diffusion method, and we searched for extended-spectrum beta-lactamases (ESBL) and/or carbapenemase- producing isolates. Isolates that were positive for ESBL and carbapenemase were further investigated for the presence of the genes: blaTEM, blaSHV, blaOXA, blaCTX-M, for ESBL and blaOXA-48 for carbapenemase. Further, isolates had their ability to form biofilms investigated by the red Congo agar method. Virulence genes of E. coli were identified in 21.37% of the tested isolates, which were classified as EPEC (the most prevalent pathotype) and ETEC or EAEC. Ten (8.55%) of the total studied E. coli isolates revealed a multidrug-resistant profile, since they were resistant to three or more antimicrobial classes; whereas four isolates (3.42%) were classified as ESBL-producers and showed the presence of blaTEM gene. None of the isolates exhibited carbapenemase activity nor did they carry carbapenemase genes. From the total of E. coli isolates, 79 (67.52%) were considered potential biofilm producers. These results address a serious public health issue, since artisanal cheeses pose a risk to consumers’ health, since may be sources of dissemination of diarrheogenic E. coli, that can cause from subclinical to severe and fatal infections in children and adults, and also emphasize the need to improve adaptations/adjustments in the manufacturing processes of these products.

2007 ◽  
Vol 59 (2) ◽  
pp. 508-512 ◽  
Author(s):  
B.R. Paneto ◽  
R.P. Schocken-Iturrino ◽  
C. Macedo ◽  
E. Santo ◽  
J.M. Marin

The occurrence of toxigenic Escherichia coli in raw milk cheese was surveyed in Middle Western Brazil. Fifty samples of cheese from different supermarkets were analyzed for E.coli. The isolates were serotyped and screened for the presence of verotoxigenic E. coli (VTEC) and enterotoxigenic E. coli (ETEC) by Polymerase Chain Reaction (PCR). The susceptibility to thirteen antimicrobial agents was evaluated by the disk diffusion method. E.coli were recovered from 48 (96.0%) of the samples. The serogroups identified were O125 (6.0%), O111 (4.0%), O55 (2.0%) and O119 (2.0%). Three (6.0%) and 1(2.0%) of the E.coli isolates were VTEC and ETEC, respectively. Most frequent resistance was observed to the following antimicrobials: cephalothin (60.0%), nalidixic acid (40.0%), doxycyclin (33.0%), tetracycline (31.0%) and ampicillin (29.0%).


2020 ◽  
Vol 28 (2) ◽  
pp. 81
Author(s):  
Raouia Ben Rhouma ◽  
Ahlem Jouini ◽  
Amira Klibi ◽  
Safa Hamrouni ◽  
Aziza Boubaker ◽  
...  

The purpose of this study was to identify <em>Escherichia coli</em> isolates in diarrhoeic and healthy rabbits in Tunisia and characterise their virulence and antibiotic resistance genes. In the 2014-2015 period, 60 faecal samples from diarrhoeic and healthy rabbits were collected from different breeding farms in Tunisia. Susceptibility to 14 antimicrobial agents was tested by disc diffusion method and the mechanisms of gene resistance were evaluated using polymerase chain reaction and sequencing methods. Forty <em>E. coli</em> isolates were recovered in selective media. High frequency of resistance to tetracycline (95%) was detected, followed by different levels of resistance to sulphonamide (72.5%), streptomycin (62.5%), trimethoprim-sulfamethoxazole (60%), nalidixic acid (32.5%), ampicillin (37.5%) and ticarcillin (35%). <em>E. coli</em> strains were susceptible to cefotaxime, ceftazidime and imipenem. Different variants of bla<sub>TEM</sub>, <em>tet</em>, <em>sul</em> genes were detected in most of the strains resistant to ampicillin, tetracycline and sulphonamide, respectively. The presence of class 1 integron was studied in 29 sulphonamide-resistant <em>E. coli</em> strains from which 15 harboured class 1 integron with four different arrangements of gene cassettes, <em>dfrA17</em>+<em>aadA5</em> (n=9), <em>dfrA1</em> + <em>aadA1</em> (n=4), <em>dfrA12</em> + <em>addA2</em> (n=1), <em>dfrA12</em>+<em>orf</em>+<em>addA2</em> (n=1). The <em>qnrB</em> gene was detected in six strains out of 13 quinolone-resistant <em>E. coli</em> strains. Seventeen <em>E. coli</em> isolates from diarrhoeic rabbits harboured the enteropathogenic eae genes associated with different virulence genes tested (<em>fimA</em>, <em>cnf1</em>, <em>aer</em>), and affiliated to B2 (n=8) and D (n=9) phylogroups. Isolated <em>E. coli</em> strains from healthy rabbit were harbouring <em>fim A</em> and/or <em>cnf1</em> genes and affiliated to A and B1 phylogroups. This study showed that <em>E. coli</em> strains from the intestinal tract of rabbits are resistant to the widely prescribed antibiotics in medicine. Therefore, they constitute a reservoir of antimicrobial-resistant genes, which may play a significant role in the spread of antimicrobial resistance. In addition, the eae virulence gene seemed to be implicated in diarrhoea in breeder rabbits in Tunisia.


2015 ◽  
Vol 9 (05) ◽  
pp. 496-504 ◽  
Author(s):  
Divya Sukumaran ◽  
Abdulla A Mohamed Hatha

Introduction: Escherichia coli strains can cause a variety of intestinal and extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains have the ability to cause severe extraintestinal infections. Multidrug resistance among ExPEC could complicate human infections. Methodology: Escherichia coli strains were isolated during the period of January 2010 to December 2012 from five different stations set at Cochin estuary. Susceptibility testing was determined by the disk-diffusion method using nine different antimicrobial agents. A total of 155 strains of Escherichia coli were screened for the presence of virulence factor genes including papAH, papC, sfa/focDE, iutA,and kpsMT II associated with ExPEC. Results: Among the 155 E. coli isolates, 26 (16.77%), carried two or more virulence genes typical of ExPEC. Furthermore, 19.23% of the ExPEC isolates with multidrug resistance were identified to belong to phylogenetic groups B2 and D. Statistically significant association of iutA gene in ExPEC was found with papC (p < 0.001) and kpsMT II (p < 0.001) genes. ExPEC isolates were mainly resistant to ampicillin (23.07%), tetracycline (19.23%), co-trimoxazole (15.38%), and cefotaxime (15.38%). The adhesion genes papAH and sfa/focDE were positively associated with resistance to gentamicin, chloramphenicol, and cefotaxime (p < 0.05). Conclusions: Co-occurrence of virulence factor genes with antibiotic resistance among ExPEC poses considerable threat to those who use this aquatic system for a living and for recreation.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 402
Author(s):  
Frédéric Moffo ◽  
Mohamed Moctar Mouliom Mouiche ◽  
Hervé Kapnang Djomgang ◽  
Patchely Tombe ◽  
Abel Wade ◽  
...  

Residues of antimicrobials used in farm can exert selective pressure and accelerate the occurrence of multidrug resistant bacteria in litter. This study aimed to investigate the resistance profile of Escherichia coli isolated from poultry litter. A total of 101 E. coli strains was isolated from 229 litter samples collected and stored for two months in the laboratory at room temperature. Antimicrobial susceptibility testing was performed using the disk diffusion method. An overall resistance prevalence of 58.4% (95% CI: 48.8–68.0) was obtained with 59 E. coli strains resistant to various antimicrobial agents. High levels of resistance were observed with ciprofloxacin (21/59: 36%), imipenem (27/59: 45%), norfloxacin (44/59: 74%), ceftriaxone (44/59: 74%), and levofloxacin (44/59: 75%). These antimicrobials classified under the Watch group by WHO are indicators of the high AMR risk to public health in Cameroon. Multivariable logistic regression analysis revealed that a greater probability of high level of E. coli multidrug resistance was associated with lack of training in poultry farming (OR = 0.13, p = 0.01), less experience in poultry farming (OR = 11.66 p = 0.04), and the high frequency of digestive tract disease (OR = 0.10; p = 0.001). This study revealed that poultry litter constitutes a potential source of dissemination of resistant germs from farm animals to the environment and humans.


2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.


2011 ◽  
Vol 74 (8) ◽  
pp. 1245-1251 ◽  
Author(s):  
ANGELA COOK ◽  
RICHARD J. REID-SMITH ◽  
REBECCA J. IRWIN ◽  
SCOTT A. McEWEN ◽  
VIRGINIA YOUNG ◽  
...  

This study estimated the prevalence of Salmonella, Campylobacter, and Escherichia coli isolates in fresh retail grain-fed veal obtained in Ontario, Canada. The prevalence and antimicrobial resistance patterns were examined for points of public health significance. Veal samples (n = 528) were collected from February 2003 through May 2004. Twenty-one Salmonella isolates were recovered from 18 (4%) of 438 samples and underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was found in 6 (29%) of 21 Salmonella isolates; 5 (24%) of 21 isolates were resistant to five or more antimicrobials. No resistance to antimicrobials of very high human health importance was observed. Ampicillin-chloramphenicol-streptomycin-sulfamethoxazole-tetracycline resistance was found in 5 (3%) of 21 Salmonella isolates. Campylobacter isolates were recovered from 5 (1%) of 438 samples; 6 isolates underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was documented in 3 (50%) of 6 Campylobacter isolates. No Campylobacter isolates were resistant to five or more antimicrobials or category I antimicrobials. E. coli isolates were recovered from 387 (88%) of 438 samples; 1,258 isolates underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was found in 678 (54%) of 1,258 E. coli isolates; 128 (10%) of 1,258 were resistant to five or more antimicrobials. Five (0.4%) and 7 (0.6%) of 1,258 E. coli isolates were resistant to ceftiofur and ceftriaxone, respectively, while 34 (3%) of 1,258 were resistant to nalidixic acid. Ciprofloxacin resistance was not detected. There were 101 different resistance patterns observed among E. coli isolates; resistance to tetracycline alone (12.7%, 161 of 1,258) was most frequently observed. This study provides baseline prevalence and antimicrobial resistance data and highlights potential public health concerns.


2015 ◽  
Vol 78 (1) ◽  
pp. 72-77 ◽  
Author(s):  
ALENA SKOČKOVÁ ◽  
KATEŘINA BOGDANOVIČOVÁ ◽  
IVANA KOLÁČKOVÁ ◽  
RENÁTA KARPÍŠKOVÁ

The occurrence of antimicrobial-resistant bacteria is an important public health issue. The aim of this study was the monitoring of resistant Escherichia coli in raw cow's milk with a focus on the detection of extended-spectrum β-lactamase (ESBL)–producing strains. In total, 263 samples of raw milk from 40 farms were collected and investigated in 2010 to 2013 in the Czech Republic. Detection of E. coli was performed and evaluated according to ISO 16649-2, and antibiotic resistance was screened by the disk diffusion method. The presence of E. coli was detected in 243 (92.4%) samples. In total, 270 isolates were obtained. Resistance to β-lactam (31.8%) and tetracycline (13.0%) antibiotics was detected most often and also multiresistant strains (5.5%) were observed. E. coli isolates found to be resistant to β-lactam, tetracycline, and quinolone antibiotics were assayed by PCR to detect selected genes encoding those resistance mechanisms. In isolates in which any bla genes were detected, a double-disk synergy test was performed. ESBL production was confirmed in 2 (0.7%) isolates. The genetic analysis identified the presence of the blaCTX-M gene and other resistance genes (tet(B) and qnrB). Both ESBL-positive isolates originated from the same farm and had an identical pulsed-field gel electrophoresis profile. The findings of our study indicate that milk can be a reservoir of bacteria carrying resistance genes with a potential for spreading through the food chain.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3449
Author(s):  
Cristina-Mirabela Gaşpar ◽  
Ludovic Toma Cziszter ◽  
Cristian Florin Lăzărescu ◽  
Ioan Ţibru ◽  
Marius Pentea ◽  
...  

This study aimed to compare the antibiotic resistance levels of the indicator bacteria Escherichia coli in wastewater samples collected from two hospitals and two urban communities. Antimicrobial susceptibility testing was performed on 81 E. coli isolates (47 from hospitals and 34 from communities) using the disc diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology. Ten antibiotics from nine different classes were chosen. The strains isolated from the community wastewater, compared to those from the hospital wastewater, were not resistant to gentamicin (p = 0.03), but they showed a significantly higher susceptibility—increased exposure to ceftazidime (p = 0.001). Multidrug resistance was observed in 85.11% of the hospital wastewater isolates and 73.53% of the community isolates (p > 0.05). The frequency of the presumed carbapenemase-producing E. coli was higher among the community isolates (76.47% compared to 68.09%) (p > 0.05), whereas the frequency of the presumed extended-spectrum beta-lactamase (ESBL)-producing E. coli was higher among the hospital isolates (21.28% compared to 5.88%) (p > 0.05). The antibiotic resistance rates were high in both the hospital and community wastewaters, with very few significant differences between them, so the community outlet might be a source of resistant bacteria that is at least as important as the well-recognised hospitals.


2017 ◽  
Vol 14 (2) ◽  
pp. 289-295
Author(s):  
M. M. Islam ◽  
S. Ahamed ◽  
M. Y. Arafat ◽  
I. Hasan ◽  
M. Rahman ◽  
...  

This study was designed to determine the shiga toxin producing genes and to investigate antibiotic sensitivity or resistant patterns of the Escherichia coli isolated from diarrheic children at Mymensingh Medical College Hospital, Bangladesh. A total of 83 stool samples were collected and screened for the detection of E. coli on the basis of cultural, staining and biochemical properties followed by molecular detection by Polymerase Chain Reaction (PCR) using genus specific 16SrRNA primers. Antimicrobial susceptibility pattern of E. coli was determined by disc diffusion method against 9 antimicrobial agents. In this study, 27 (32.53%) out of 83 samples, were confirmed as E. coli. Overall prevalence of shiga toxin producing E. coli (STEC) among the examined children was 1.20% (n=1/83).  Further, 27 E. coli isolates were analyzed for the presence of Stx-1 and Stx-2 genes by duplex-PCR.  The STEC isolate was confirmed to be positive for the presence of the Stx-2 gene only. Highest susceptibility of the E. coli isolates was found against Gentamicin (92.59%), followed by Ciprofloxacin (48.14%) and Moxifloxacin (33.33%). More than 77.78% of the isolates were resistant to more than three antibiotics thus defined as multi-drug resistant (MDR). In conclusion, Gentamicin and Ciprofloxacin can be recommended as the effective drugs successful treatment of STEC infections in children.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1828 ◽  
Author(s):  
Paul Katongole ◽  
Daniel Bulwadda Kisawuzi ◽  
Henry Kyobe Bbosa ◽  
David Patrick Kateete ◽  
Christine Florence Najjuka

Introduction: Uropathogenic Escherichia coli (UPEC) remains the most common cause of urinary tract infections (UTIs). They account for over 80-90% of all community-acquired and 30-50% of all hospital-acquired UTIs. E. coli strains have been found to belong to evolutionary origins known as phylogenetic groups. In 2013, Clermont classified E. coli strains into eight phylogenetic groups using the quadruplex PCR method. The aim of this study was to identify the phylogenetic groups of UPEC strains in Uganda using Clermont’s quadruplex PCR method and to assess their antibiotic susceptibility patterns in Uganda. Methods: In this cross-sectional study, 140 stored uropathogenic E. coli isolates from the Clinical Microbiology Laboratory, Department of Medical Microbiology, College of Health Sciences Makerere University were subjected to phylogenetic typing by a quadruplex PCR method. Antimicrobial susceptibility testing was performed by disk diffusion method according to Clinical & Laboratory Standards Institute (CLSI) guidelines. Phenotypic detection of extended-spectrum beta-lactamase, AmpC and carbapenemases was done according to CLSI guidelines and Laboratory SOPs. Results: Phylogenetic group B2 (40%) was the most predominant, followed by A (6.23%), clade I and II (5%), D and E (each 2.14%), B1 (1.43%) and F and C (each 0.71%). The most common resistant antibiotic was trimethoprim-sulphamethoxazole (90.71%) and the least was imipenem (1.43%). In total, 73.57% of isolates were multi-drug resistant (MDR). Antibiotic resistance was mainly detected in phylogenetic group B2 (54%). Conclusions: Our findings showed the high prevalence of MDR E. coli isolates, with the dominance of phylogenetic group B2. About 9% of E. coli isolates belonged to the newly described phylogroups C, E, F, and clade I and II.


Sign in / Sign up

Export Citation Format

Share Document