scholarly journals Morphological and morphometric characteristics, drying rate, and chemical composition of forage grasses grown for hay production

2020 ◽  
Vol 41 (3) ◽  
pp. 1037
Author(s):  
Keuven dos Santos Nascimento ◽  
Ricardo Loiola Edvan ◽  
Francigefeson Linhares dos Santos Ezequiel ◽  
Felipe Luênio de Azevedo ◽  
Lucas de Souza Barros ◽  
...  

The objective of this study is to characterize six forage grass cultivars used for hay production. The morphological and morphometric characteristics of these cultivars were determined using a completely randomized block design, and the rates of loss of dry matter and crude protein (CP) were evaluated using a completely randomized design with a 6 x 5 factorial scheme (six cultivars vs. five drying periods [0, 1, 2, 3 and 4 hours]) and three repetitions. Morphological and morphometric characteristics and the chemical composition of the cultivars were analyzed using the Scott-Knott test, and the drying time was assessed using linear regression analysis at a level of significance of 5%. There was a significant effect (p < 0.05) of morphological and morphometric characteristics, except for stem thickness (p=0.1) and the live-to-dead biomass ratio (p=0.27). The Massai cultivar presented a higher leaf to stem ratio (1.23 ± 0.60). There was an increased linear response (p < 0.05) for the rate of water loss in the six evaluated cultivars. The Massai cultivar had a safe storage moisture content (80% dry matter) after 3 hours and 11 minutes of sun exposure, and the drying rate was 10.34% per hour of sun exposure. The cultivars Paredão and Marandú showed a decreasing linear effect of CP content across the harvest period, corresponding to 22.07% and 21.38 ± 0.55% in fresh plants, respectively, and 20.13% and 18.11 ± 0.55% after 4 hours of sun exposure, respectively. The Massai cultivar had the most efficient rate of water loss, reaching a safe storage moisture content in 3 hours and 6 minutes, with a CP content of 18.63%.

2012 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Yuwana Yuwana

Experiment on catfish drying employing ‘Teko Bersayap’ solar dryer was conducted. The result of the experiment indicated that the dryer was able to increase ambient temperature up to 44% and decrease ambient relative humidity up to 103%. Fish drying process followed equations : KAu = 74,94 e-0,03t for unsplitted fish and KAb = 79,25 e-0,09t for splitted fish, where KAu = moisture content of unsplitted fish (%), KAb = moisture content of splitted fish (%), t = drying time. Drying of unsplitted fish finished in 43.995 hours while drying of split fish completed in 15.29 hours. Splitting the fish increased 2,877 times drying rate.


Author(s):  
MILTON CANO-CHAUCA ◽  
AFONSO M. RAMOS ◽  
PAULO C. STRINGHETA ◽  
JOSÉ ANTONIO MARQUES ◽  
POLLYANNA IBRAHIM SILVA

Curvas de secagem de banana passa foram determinadas, utilizando-se três temperaturas do ar de secagem. Os resultados indicaram que para reduzir o teor de umidade do produto até 23,5% foram necessários tempos de secagem de 51, 36 e 30 horas paras as temperaturas de 50, 60 e 70ºC, respectivamente. O modelo exponencial U/Uo = exp(-kt) foi ajustado para os dados experimentais mediante análise de regressão não-linear, encontrandose alto coeficiente de regressão linear. Determinou-se a atividade de água do produto ao longo do processo de secagem para as três temperaturas testadas. Estudou-se a correlação entre a atividade de água e o teor de umidade do produto, determinando-se as isotermas de dessorção da banana passa a 25ºC. Observou-se que a atividade de água diminuiu em função do tempo de secagem e do teor de umidade para as três temperaturas de secagem. Os dados experimentais foram ajustados mediante regressão não-linear ao modelo polinomial e a seguinte equação foi obtida: U = -1844,93 + 7293,53Aa – 9515,52Aa2 + 4157,196Aa3. O ajuste mostrou-se satisfatório (R2 > 0,90). DRYING CURVES AND WATER ACTIVITY EVALUATION OF THE BANANA-PASSES Abstract Banana drying curves were determined by utilizing three drying air temperatures. The results indicated that to reduce the moisture content of the product until 23.5% it were necessary drying times of 51, 36 and 30 hours for temperatures of 50, 60 and 70ºC, respectively. The exponential model U/Uo = exp(-kt) was adjusted for the experimental data by means of non linear regression analysis, and a high coefficient of linear regression was found. The water activity of the product was determined throughout the drying process for the three tested temperatures. The correlation between the water activity and moisture content of the product was studied, and the sorption isotherms were determined at 25º C. It was observed that the water activity decreased in function to the drying time and moisture content for the three drying temperatures. The experimental data were adjusted by means of non linear regression to the polynomial model and the following equation was obtained: U = - 1844.93 + 7293.53A a – 9515.52 Aa 2 + 4157.196A a 3. The final adjust was satisfactory (R2 > 0.90).


1974 ◽  
Vol 54 (3) ◽  
pp. 479-484 ◽  
Author(s):  
H. N. HAYHOE ◽  
L. P. JACKSON

Observations taken at Nappan, N.S. of drying rates of field-cured hay and the corresponding weather data are reported. Three consecutive good days were chosen as the standard for good hay drying weather. Based on 30 yr of weather records, the highest probability (36%) of having this good weather at Nappan occurs in the first 2 wk of July. Maximum production of digestible dry matter in hay occurs about mid-June. Rapid storage of high quality forage is desirable. To facilitate harvest, early cuttings of forage should be taken as ensilage. An equation is developed which relates the observed moisture content in the field to the accumulation of potential evaporation from the time of cutting. The effect of precipitation on drying time is considered. An index based on potential evaporation and precipitation is proposed as a measure of the suitability of weather data for predicting field drying rates. A good drying day is defined in terms of this index and used in the estimation of the probability of sequences of good drying days from 30 yr of weather data from Nappan, N.S.


2016 ◽  
Vol 12 (6) ◽  
pp. 599-606 ◽  
Author(s):  
Flávia Daiana Montanuci ◽  
Raphaela Mulato Cavalcante ◽  
Camila Augusto Perussello ◽  
Luiz Mario de Matos Jorge

Abstract The study of process kinetics may aid the design and optimization of drying systems. This paper evaluated the influence of drying temperature (40, 60 and 80 °C) on the moisture content, drying rate, density, shrinkage and breakage of maize dried in two different dryers: oven and silo dryer. In both dryers, the temperature increase reduced drying time, final moisture content and shrinkage of the grains, however increased breakage. Drying rate was higher in the oven (6.4×10−4±2.3×10−4s−1 versus 5.4×10−4±1.2×10−4s−1), while shrinkage (15.2±4.7 % versus 24.4±5.6 %) and density increase (16.6±5.9 % versus 33.4±5.8 %) were more intense in the silo. There was a large release of husk in the silo dryer and the moisture content was slightly smaller in the lower layers respective to the upper ones.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Erik Bardy ◽  
Sabrine Manai ◽  
Michel Havet ◽  
Olivier Rouaud

Electrohydrodynamic convective drying (EHD drying) is a novel drying method used to enhance forced convection drying (FC drying) by using a wire-electrode to create an electrostatic field. In a previous study, the efficiency of EHD drying (using three different wire-electrode configurations) was compared to classical FC drying by measuring the drying rate of methylcellulose gel. Efficiency was quantified in terms of exergy (transient exergetic efficiency) through the use of a proposed model. In that previous study, it was stated that methylcellulose gel can be used to simulate a food product and can be controlled to a predetermined moisture content. The purpose of this current work was to compare how methylcellulose gel compares to a real food product (mango fruit) in terms of drying kinetics for both EHD and FC drying. Drying kinetics were quantified in terms of a per unit area measurement of the exergetic efficiency, exergy supplied and used, drying rate, and total drying time to reach a moisture content of 50%. Initial results show that for both EHD and FC drying, methylcellulose gel and mango fruit exhibit similar drying kinetics.


2020 ◽  
Vol 33 (4) ◽  
pp. 264-272
Author(s):  
Cláudia M Serra-Ferreira ◽  
Agatha G Farias-Souza ◽  
Rita C Almeida-Mendonça ◽  
Melany Simões-Souza ◽  
Wagner R L Lopes-Filho ◽  
...  

Background: Tropical grasses, such as elephant grass, have high moisture content during its ideal phenological state for silage. High moisture content hinders proper preservation and reduces the nutritive value of silage due to secondary fermentation and production of effluents. Adding feed materials with high dry matter content, such as murumuru (Astrocaryum murumuru) meal, is a potential alternative to improve silage yield. Objective: To determine the effects of including murumuru meal (0, 7, 14, 21, and 28%) on the fermentative characteristics, microbiological activity, aerobic stability, and chemical composition of elephant grass silages. Methods: A completely randomized design with five treatments and five replicates was used. Elephant grass was collected at 60 d of age, minced, and homogenized with murumuru meal. The mass was placed in experimental 15-L silos. The silos were collected and analyzed 45 d later. Results: Effluent production decreased (p<0.05) as the proportions of murumuru meal in silage increased. A quadratic effect (p<0.05) was observed on dry matter recovery. An increase (p<0.05) was observed in dry matter content, a decrease (p<0.05) in the neutral detergent fiber content, and an increase (p<0.05) in the non-fibrous carbohydrate content with the inclusion of murumuru meal. Conclusions: Addition of murumuru meal improves chemical composition and does not affect the fermentative characteristics of elephant grass silage, while it reduces effluent losses. Nevertheless, the inclusion of murumuru meal in the elephant grass silage decreased the time of aerobic stability.


2020 ◽  
Vol 13 (2) ◽  
pp. 42-58
Author(s):  
Andi Muhammad Irfan ◽  
Arimansyah Arimansyah ◽  
A. Ramli Rasyid ◽  
Nunik Lestari

Abstrak. Penelitian ini bertujuan untuk menguji unjuk kerja pengering tenaga surya tipe efek rumah kaca pada pengeringan cabai dengan perlakuan low temperature long time (LTLT) blanching. Selain itu, pada penelitian ini juga dilakukan kajian mengenai karakteristik pengeringan cabai yang dipengaruhi oleh perlakuan LTLT blanching, terutama pada kadar air, laju pengeringan, kecepatan pengeringan, dan kualitas warna. Pengujian dilakukan dengan cara mengeringkan cabai merah dengan pretreatment LTLT blanching yang dikombinasikan dengan perlakuan merotasikan rak pengering (R) dan tanpa merotasikan rak pengering (TR). Sebagai kontrol adalah cabai yang dikeringkan tanpa blanching dan tanpa merotasikan rak pengering (K). Hasil penelitian menunjukkan bahwa perlakuan LTLT blanching yang dikombinasikan dengan merotasikan rak pengering (R) merupakan perlakuan yang terbaik, dengan kadar air akhir cabai kering sebesar 9,82% dan sesuai dengan standar SNI. Waktu pengeringan yang dibutuhkan adalah selama 5 hari. Warna cabai kering yang dihasilkan adalah yang terbaik dari dua perlakuan lainnya, dengan nilai L*, a*, dan b* untuk setelah proses LTLT blanching (sebelum proses pengeringan) dan setelah pengeringan berakhir (cabai kering) berturut-turut adalah 36,02, 38,22, 13,62, dan 32,44, 33,89, dan 10,19. Energi yang terpakai untuk pengeringan cabai adalah sebesar 596181 kJ. Perlakuan R ini juga menghasilkan efisiensi pengeringan terbaik, yaitu sebesar 34,01%.Performance of Green House Effect Type Solar Dryer in the Chillies Drying with Low Temperature Long Time Blanching TreatmentAbstract. This study aims to examine the performance of the greenhouse effect type solar dryer on drying chillies with low temperature long time (LTLT) blanching treatment. In addition, a study was also conducted on the characteristics of drying chillies and the final product affected by LTLT blanching treatment, especially in terms of moisture content, drying rate, drying speed, and color. Testing was performed by drying red chilli with LTLT blanching treatment, which was combined with the treatment of rotating dryer rack (R) and without rotating dryer rack (TR). As a control, chillies were dried without blanching treatment and without rotating dryer rack (K). The results show that the LTLT blanching treatment combined with rotating the drying rack (R) is the best treatment, with a final moisture content of 9.82% which is in accordance with SNI standards. The drying time needed is 5 days. The dried chilli color produced is the best of the other treatments, with values of L*, a*, and b* for after the LTLT blanching process and after drying ended, respectively 36.02, 38.22, 13.62, and 32.44, 33.89, 10.19. The energy used for drying chillies is 596181 kJ. This R treatment also produces the best drying efficiency, which is 34.01%.


Revista CERES ◽  
2012 ◽  
Vol 59 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Valdiney Cambuy Siqueira ◽  
Osvaldo Resende ◽  
Tarcísio Honório Chaves

Given the necessity of developing jatropha cultivation equipment, this work adjusted different mathematical models to experimental data obtained from the drying of jatropha seeds submitted to different drying conditions and selected the best model to describe the drying process. The experiment was carried out at the Federal Institute of Goiás - Rio Verde Campus. Seeds with initial moisture content of approximately 0.50 (kg water/kg dry matter) were dried in a forced air-ventilated oven, at temperatures of 45, 60, 75, 90 and 105°C to moisture content of 0.10 ± 0.005 (kg water/kg dry matter). The experimental data were adjusted to 11 mathematical models to represent the drying process of agricultural products. The models were compared using the coefficient of determination, chi-square test, relative mean error, estimated mean error and residual distribution. It was found that the increase in the air temperature caused a reduction in the drying time of seeds. The models Midilli and Two Terms were suitable to represent the drying process of Jatropha seeds and between them the use of the Midili model is recommended due to its greater simplicity.


2013 ◽  
Vol 16 (2) ◽  
pp. 31-34
Author(s):  
Ivan Vitázek ◽  
Peter Vereš

Abstract Maize is harvested after reaching maturity when its moisture content generally ranges from 30 % to 34 %, while the optimum moisture for storage is around 14-15 %. This moisture is usually achieved by thermal drying. Apart from initial moisture, the total drying time is affected by the temperature of the drying environment, atmospheric conditions and properties of the dried material. The present paper provides a description of the process of moisture loss and subsequent drying rate of grain maize from various growers. Obtained results are processed in a tabular and graphical form. After 30 minutes of drying, all the maize samples (10 samples two times in total) reached a moisture of 14 % and less, whereas 6 samples already after 20 minutes of drying. The rate of moisture loss was proportional to the initial moisture content. The drying of grain maize is considered one stage of the technological procedure in post-harvest treatment. Moreover, it is an essential preventive measure for wet harvest. Contemporary technologies of maize drying in modern dryers favourably influence the energy consumption in the process while maintaining the qualitative parameters of the dried material.


Sign in / Sign up

Export Citation Format

Share Document