Investigation of Stationary Vortex Structures in the Model Combustion Chamber

2012 ◽  
Vol 7 (2) ◽  
pp. 56-65
Author(s):  
Elizaveta Anokhina ◽  
Dmitriy Dekterev ◽  
Sergey Shtork ◽  
Sergey Alekseenko

This work focuses on experimental and numerical study of stationary vortex structures in a model of vortex combustion chamber of the tangential type. The experiments included the visualization of vortex structures in the work area using a laser light source and a digital high-definition cameras. The calculations were performed using a commercial package STAR-CCM +. From known turbulence models have been chosen the most suitable for the problem under investigation. In the calculations we obtained results that agree well with experimental data, which confirms the adequacy of employed numerical model

2019 ◽  
Vol 12 (3) ◽  
pp. 262-271
Author(s):  
T.N. Rajesh ◽  
T.J.S. Jothi ◽  
T. Jayachandran

Background: The impulse for the propulsion of a rocket engine is obtained from the combustion of propellant mixture inside the combustion chamber and as the plume exhausts through a convergent- divergent nozzle. At stoichiometric ratio, the temperature inside the combustion chamber can be as high as 3500K. Thus, effective cooling of the thrust chamber becomes an essential criterion while designing a rocket engine. Objective: A new cooling method of thrust chambers was introduced by Chiaverni, which is termed as Vortex Combustion Cold-Wall Chamber (VCCW). The patent works on cyclone separators and confined vortex flow mechanism for providing high propellant mixing with improved degree of turbulence inside the combustion chamber, providing the required notion for studies on VCCW. The flow inside a VCCW has a complex structure characterised by axial pressure losses, swirl velocities, centrifugal force, flow reversal and strong turbulence. In order to study the flow phenomenon, both the experimental and numerical investigations are carried out. Methods: In this study, non-reactive flow analysis was conducted with real propellants like gaseous oxygen and hydrogen. The test was conducted to analyse the influence of mixture ratio and injection pressure of the propellants on the chamber pressure in a vortex combustion chamber. A vortex combustor was designed in which the oxidiser injected tangentially at the aft end near the nozzle spiraled up to the top plate and formed an inner core inside the chamber. The fuel was injected radially from injectors provided near the top plate and the propellants were mixed in the inner core. This resulted in enhanced mixing and increased residence time for the fuel. More information on the flow behaviour has been obtained by numerical analysis in Fluent. The test also investigated the sensitivity of the tangential injection pressure on the chamber pressure development. Results: All the test cases showed an increase in chamber pressure with the mixture ratio and injection pressure of the propellants. The maximum chamber pressure was found to be 3.8 bar at PC1 and 2.7 bar at PC2 when oxidiser to fuel ratio was 6.87. There was a reduction in chamber pressure of 1.1 bar and 0.7 bar at PC1 and PC2, respectively, in both the cases when hydrogen was injected. A small variation in the pressure of the propellant injected tangentially made a pronounced effect on the chamber pressure and hence vortex combustion chamber was found to be very sensitive to the tangential injection pressure. Conclusion: VCCW mechanism has been to be found to be very effective for keeping the chamber surface within the permissible limit and also reducing the payload of the space vehicle.


Author(s):  
Ehsan Dehdarinejad ◽  
Morteza Bayareh ◽  
Mahmud Ashrafizaadeh

Abstract The transfer of particles in laminar and turbulent flows has many applications in combustion systems, biological, environmental, nanotechnology. In the present study, a Combined Baffles Quick-Separation Device (CBQSD) is simulated numerically using the Eulerian-Lagrangian method and different turbulence models of RNG k-ε, k-ω, and RSM for 1–140 μm particles. A two-way coupling technique is employed to solve the particles’ flow. The effect of inlet flow velocity, the diameter of the splitter plane, and solid particles’ flow rate on the separation efficiency of the device is examined. The results demonstrate that the RSM turbulence model provides more appropriate results compared to RNG k-ε and k-ω models. Four thousand two hundred particles with the size distribution of 1–140 µm enter the device and 3820 particles are trapped and 380 particles leave the device. The efficiency for particles with a diameter greater than 28 µm is 100%. The complete separation of 22–28 μm particles occurs for flow rates of 10–23.5 g/s, respectively. The results reveal that the separation efficiency increases by increasing the inlet velocity, the device diameter, and the diameter of the particles.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Seok-Ki Choi ◽  
Seong-O Kim ◽  
Hoon-Ki Choi

A numerical study for the evaluation of heat transfer correlations for sodium flows in a heat exchanger of a fast breeder nuclear reactor is performed. Three different types of flows such as parallel flow, cross flow, and two inclined flows are considered. Calculations are performed for these three typical flows in a heat exchanger changing turbulence models. The tested turbulence models are the shear stress transport (SST) model and the SSG-Reynolds stress turbulence model by Speziale, Sarkar, and Gaski (1991, “Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical System Approach,” J. Fluid Mech., 227, pp. 245–272). The computational model for parallel flow is a flow past tubes inside a circular cylinder and those for the cross flow and inclined flows are flows past the perpendicular and inclined tube banks enclosed by a rectangular duct. The computational results show that the SST model produces the most reliable results that can distinguish the best heat transfer correlation from other correlations for the three different flows. It was also shown that the SSG-RSTM high-Reynolds number turbulence model does not deal with the low-Prandtl number effect properly when the Peclet number is small. According to the present calculations for a parallel flow, all the old correlations do not match with the present numerical solutions and a new correlation is proposed. The correlations by Dwyer (1966, “Recent Developments in Liquid-Metal Heat Transfer,” At. Energy Rev., 4, pp. 3–92) for a cross flow and its modified correlation that takes into account of flow inclination for inclined flows work best and are accurate enough to be used for the design of the heat exchanger.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Halina Pawlak-Kruczek ◽  
Robert Lewtak ◽  
Zbigniew Plutecki ◽  
Marcin Baranowski ◽  
Michal Ostrycharczyk ◽  
...  

The paper presents the experimental and numerical study on the behavior and performance of an industrial scale boiler during combustion of pulverized bituminous coal with various shares of predried lignite. The experimental measurements were carried out on a boiler WP120 located in CHP, Opole, Poland. Tests on the boiler were performed during low load operation and the lignite share reached over to 36% by mass. The predried lignite, kept in dedicated separate bunkers, was mixed with bituminous coal just before the coal mills. Computational fluid dynamic (CFD) simulation of a cofiring scenario of lignite with hard coal was also performed. Site measurements have proven that cofiring of a predried lignite is not detrimental to the boiler in terms of its overall efficiency, when compared with a corresponding reference case, with 100% of hard coal. Experiments demonstrated an improvement in the grindability that can be achieved during co-milling of lignite and hard coal in the same mill, for both wet and dry lignite. Moreover, performed tests delivered empirical evidence of the potential of lignite to decrease NOx emissions during cofiring, for both wet and dry lignite. Results of efficiency calculations and temperature measurements in the combustion chamber confirmed the need to predry lignite before cofiring. Performed measurements of temperature distribution in the combustion chamber confirmed trend that could be seen in the results of CFD. CFD simulations were performed for predried lignite and demonstrated flow patterns in the combustion chamber of the boiler, which could prove useful in case of any further improvements in the firing system. CFD simulations reached satisfactory agreement with the site measurements in terms of the prediction of emissions.


Author(s):  
F. Mumic ◽  
L. Ljungkruna ◽  
B. Sunden

In this work, a numerical study has been performed to simulate the heat transfer and fluid flow in a transonic high-pressure turbine stator vane passage. Four turbulence models (the Spalart-Allmaras model, the low-Reynolds-number realizable k-ε model, the shear-stress transport (SST) k-ω model and the v2-f model) are used in order to assess the capability of the models to predict the heat transfer and pressure distributions. The simulations are performed using the FLUENT commercial software package, but also two other codes, the in-house code VolSol and the commercial code CFX are used for comparison with FLUENT results. The results of the three-dimensional simulations are compared with experimental heat transfer and aerodynamic results available for the so-called MT1 turbine stage. It is observed that the predictions of the vane pressure field agree well with experimental data, and that the pressure distribution along the profile is not strongly affected by choice of turbulence model. It is also shown that the v2-f model yields the best agreement with the measurements. None of the tested models are able to predict transition correctly.


2006 ◽  
Vol 128 (4) ◽  
pp. 656-662 ◽  
Author(s):  
Seok-Ki Choi ◽  
Seong-O Kim

A numerical study of the evaluation of turbulence models for predicting the thermal stratification phenomenon is presented. The tested models are the elliptic blending turbulence model (EBM), the two-layer model, the shear stress transport model (SST), and the elliptic relaxation model (V2-f). These four turbulence models are applied to the prediction of a thermal stratification in an upper plenum of a liquid metal reactor experimented at the Japan Nuclear Cooperation (JNC). The EBM and V2-f models predict properly the steep gradient of the temperature at the interface of the cold and hot regions that is observed in the experimental data, and the EBM and V2-f models have the capability of predicting the temporal oscillation of the temperature. The two-layer and SST models predict the diffusive temperature gradient at the interface of a thermal stratification and fail to predict a temporal oscillation of the temperature. In general, the EBM predicts best the thermal stratification phenomenon in the upper plenum of the liquid metal reactor.


Author(s):  
Usama J. Mizher ◽  
Peter A. Velmisov

Abstract. The search for new solutions in the field of energy, preventing negative impact on the environment, is one of the priority tasks for modern society. Natural gas occupies a stable position in the demand of the UES of Russia for fossil fuel. Biogas is a possible alternative fuel from organic waste. Biogas has an increased content of carbon dioxide, which affects the speed of flame propagation, and a lower content of methane, which reduces its heat of combustion. However, the combined combustion of natural gas and biogas, provided that the mixture of fuel and oxidizer is well mixed, can, on the one hand, reduce the maximum adiabatic temperature in the combustion chamber of power boilers at TPPs, and, on the other, increase the stability of biogas combustion. For the combined combustion of natural gas and biogas in operating power boilers, it is necessary to reconstruct the existing burners. For a high-quality reconstruction of burners capable of providing stable and low-toxic combustion of fuel, it is important to have theoretical data on the combustion effect of combustion of combinations of organic fuels on the temperature distribution in the combustion zone and on its maximum value. In this paper, self-similar solutions of the energy equation for axisymmetric motion of a liquid (gas) in a model of a viscous incompressible medium are obtained. Basing on them, a stationary temperature field in swirling jets is constructed. A set of programs based on the ANSYS Fluent software solver has been developed for modeling and researching of thermal and gas-dynamic processes in the combustion chamber. On the basis of the k - ϵ (realizable) turbulence model, the combustion process of a swirling fuel-air mixture is simulated. The results of an analytical and numerical study of the temperature and carbon dioxide distribution in the jet are presented.


Sign in / Sign up

Export Citation Format

Share Document