Phytochemical properties of a rare mangrove Aegialitis rotundifolia Roxb. leaf extract and its influence on human dermal fibroblast cell migration using wound scratch model

Author(s):  
Debjit Ghosh ◽  
Sumanta Mondal ◽  
Ramakrishna K
Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 38
Author(s):  
Chi-Jen Tai ◽  
Chiung-Yao Huang ◽  
Atallah F. Ahmed ◽  
Raha S. Orfali ◽  
Walied M. Alarif ◽  
...  

Chemical investigation of a Red Sea Spongia sp. led to the isolation of four new compounds, i.e., 17-dehydroxysponalactone (1), a carboxylic acid, spongiafuranic acid A (2), one hydroxamic acid, spongiafuranohydroxamic acid A (3), and a furanyl trinorsesterpenoid 16-epi-irciformonin G (4), along with three known metabolites (−)-sponalisolide B (5), 18-nor- 3,17-dihydroxy-spongia-3,13(16),14-trien-2-one (6), and cholesta-7-ene-3β,5α-diol-6-one (7). The biosynthetic pathway for the molecular skeleton of 1 and related compounds was postulated for the first time. Anti-inflammatory activity of these metabolites to inhibit superoxide anion generation and elastase release in N-formyl-methionyl-leucyl phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophil cells and cytotoxicity of these compounds toward three cancer cell lines and one human dermal fibroblast cell line were assayed. Compound 1 was found to significantly reduce the superoxide anion generation and elastase release at a concentration of 10 μM, and compound 5 was also found to display strong inhibitory activity against superoxide anion generation at the same concentration. Due to the noncytotoxic activity and the potent inhibitory effect toward the superoxide anion generation and elastase release, 1 and 5 can be considered to be promising anti-inflammatory agents.


Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 130
Author(s):  
Ping Liu ◽  
Jeong-Wook Choi ◽  
Min-Kyeong Lee ◽  
Youn-Hee Choi ◽  
Taek-Jeong Nam

Wound healing is a dynamic and complex process. The proliferation and migration of dermal fibroblasts are crucial for wound healing. Recent studies have indicated that the extracts from Spirulina platensis have a positive potential for wound healing. However, its underlying mechanism is not fully understood. Our previous study showed that spirulina crude protein (SPCP) promoted the viability of human dermal fibroblast cell line (CCD-986sk cells). In this study, we further investigated the wound healing effect and corresponding mechanisms of SPCP on CCD-986sk cells. Bromodeoxyuridine (BrdU) assay showed that SPCP promoted the proliferation of CCD-986sk cells. The wound healing assay showed that SPCP promoted the migration of CCD-986sk cells. Furthermore, cell cycle analysis demonstrated that SPCP promoted CCD-986sk cells to enter S and G2/M phases from G0/G1 phase. Western blot results showed that SPCP significantly upregulated the expression of cyclin D1, cyclin E, cyclin-dependent kinase 2 (Cdk2), cyclin-dependent kinase 4 (Cdk4), and cyclin-dependent kinase 6 (Cdk6), as well as inhibited the expression of CDK inhibitors p21 and p27 in CCD-986sk cells. In the meanwhile, SPCP promoted the phosphorylation and activation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt). However, the phosphorylation of Akt was significantly blocked by PI3K inhibitor (LY294002), which in turn reduced the SPCP-induced proliferation and migration of CCD-986sk cells. Therefore, the results presenting in this study suggested that SPCP can promote the proliferation and migration of CCD-986sk cells; the PI3K/Akt signaling pathway play a positive and important role in these processes.


2015 ◽  
Vol 749 ◽  
pp. 220-224 ◽  
Author(s):  
Min Sup Kim ◽  
Sang Jun Park ◽  
Bon Kang Gu ◽  
Chun Ho Kim

Chitosan and gelatin has attracted considerable interest owing to its advantageous biological properties such as excellent biocompatibility, biodegradation, and non-toxic properties. In this paper, we investigated the potential of chitosan/gelatin (Chi-Gel) nanofibers mat with enhanced cell viability for use as cell culture scaffolds. The surface morphology, mechanical properties, and initial contact angle analysis of Chi-Gel nanofibers mat were evaluated. The proliferation of human dermal fibroblast cell (HDFs) on Chi-Gel nanofibers mat was found to be approximately 20% higher than the pure chitosan nanofibers mat after 7 days of culture. These results suggest that the Chi-Gel nanofibers mat has great potential for use tissue engineering applications.


Author(s):  
Fatma Demirkaya Miloglu ◽  
Abdulbaki Akpınar ◽  
Leyla Güven ◽  
Alper Kursat Demirkaya ◽  
Gulsah Gundogdu ◽  
...  

Wound is tissue damage that occurs in the skin. Helichrysum species (Altınotu) are rich in phenolic compounds used in traditional medicine for wound healing. The main component in their flower head (capitulum) is phenolic compounds. The present study investigates the proliferative, oxidative stress, and wound healing properties of the methanolic extract of Helichrysum plicatum subsp. pseudoplicatum capitulum on a human dermal fibroblast (HDF) cell line in this study. H plicatum subsp. pseudoplicatum capitulums were collected in Erzurum, Turkey (altitude 1950 m), dried, pulverized, and extracted with methanol. Firstly, total phenolic contents were determined and secondly, the proliferative effect, oxidative stress activities, and wound healing effects on HDF cells were evaluated by the cell proliferation kit (XTT) test, total antioxidant status (TAS), and total oxidant status (TOS) commercial kits, and the scratch experiment by taking microscopic images of the cells at 0, 12, 18, and 24 h, respectively. Total phenolic content was found to be 142.00 ± 0.73 mg gallic acid equivalent per gram (GAE/g) extract. The capitulum extract has a proliferative effect at 0.5 to 10 µg/mL concentrations according to the XTT test results. It was observed that TAS levels significantly increased in the plant extract at the concentration ranges 1 to 10 µg/mL ( P < .01). About 1 to 5 µg/mL plant extract started to increase cell migration at the 12 h and significantly closed the wound area at the 24 h. At the doses between 1 to 5 μg/mL, it has the most substantial effect on both cell viability and antioxidant effect, and wound healing was found to be in this concentration range. These findings suggested that the H plicatum subsp. pseudoplicatum capitulum is a valuable source of phenolic content with important antioxidant activity at wound healing and it was concluded that the capitulum extract accelerates wound healing by increasing cell migration in low doses.


2021 ◽  
Vol 19 (12) ◽  
pp. 2631-2638
Author(s):  
Idowu Jonas Sagbo ◽  
Wilfred Otang-Mbeng

Purpose: To determine the efficacy of Helichrysum petiolare ethanol leaf extract against skin aging.Methods: The cytotoxic potential of the plant extract towards human dermal fibroblast (MRHF) cells was determined by Hoechst 33342/Propidium iodide (PI) staining. Effect of H. petiolare extract on reactive oxygen species (ROS) levels in MRHF cells and NO (nitric oxide) production in RAW 246.7 cells activated by LPS (lipopolysaccharides) was investigated. The inhibitory effect of the extract againstcollagenase, elastase, tyrosinase and protein glycation was also evaluated.Results: The extract did not display cytotoxicity towards MRHF cells at the tested concentrations when compared to the trend seen with the untreated control (p < 0.05). The extract caused a significant decrease (p < 0.05) in ROS levels in MRHF cells in a concentration-dependent manner and also demonstrated a reduction in NO production in RAW cells with no toxicity. Furthermore, the extract produced a weak inhibition of collagenase, elastase and tyrosinase activities when compared to the corresponding positive controls, but effectively inhibited protein glycation at the tested concentrations.Conclusion: The findings suggest that the ethanol leaf extract from H. petiolare has the potential to mitigate skin aging and therefore needs to be further investigated for possible clinical applications. Keywords: Cytotoxicity, Efficacy, Helichrysum petiolare, MRHF cells, Oxidative stress, Protein glycation; skin aging


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2582
Author(s):  
Ezgi Cinan ◽  
Sumeyye Cesur ◽  
Merve Erginer Haskoylu ◽  
Oguzhan Gunduz ◽  
Ebru Toksoy Oner

Considering the significant advances in nanostructured systems in various biomedical applications and the escalating need for levan-based nanoparticles as delivery systems, this study aimed to fabricate levan nanoparticles by the electrohydrodynamic atomization (EHDA) technique. The hydrolyzed derivative of levan polysaccharide from Halomonas smyrnensis halophilic bacteria, hydrolyzed Halomonas levan (hHL), was used. Nanoparticles were obtained by optimizing the EHDA parameters and then they were characterized in terms of morphology, molecular interactions, drug release and cell culture studies. The optimized hHL and resveratrol (RS)-loaded hHL nanoparticles were monodisperse and had smooth surfaces. The particle diameter size of hHL nanoparticles was 82.06 ± 15.33 nm. Additionally, release of RS from the fabricated hHL nanoparticles at different pH conditions were found to follow the first-order release model and hHL with higher RS loading showed a more gradual release. In vitro biocompatibility assay with human dermal fibroblast cell lines was performed and cell behavior on coated surfaces was observed. Nanoparticles were found to be safe for healthy cells. Consequently, the fabricated hHL-based nanoparticle system may have potential use in drug delivery systems for wound healing and tissue engineering applications and surfaces could be coated with these electrosprayed particles to improve cellular interaction.


Sign in / Sign up

Export Citation Format

Share Document