scholarly journals Wound Healing Potential of Spirulina Protein on CCD-986sk Cells

Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 130
Author(s):  
Ping Liu ◽  
Jeong-Wook Choi ◽  
Min-Kyeong Lee ◽  
Youn-Hee Choi ◽  
Taek-Jeong Nam

Wound healing is a dynamic and complex process. The proliferation and migration of dermal fibroblasts are crucial for wound healing. Recent studies have indicated that the extracts from Spirulina platensis have a positive potential for wound healing. However, its underlying mechanism is not fully understood. Our previous study showed that spirulina crude protein (SPCP) promoted the viability of human dermal fibroblast cell line (CCD-986sk cells). In this study, we further investigated the wound healing effect and corresponding mechanisms of SPCP on CCD-986sk cells. Bromodeoxyuridine (BrdU) assay showed that SPCP promoted the proliferation of CCD-986sk cells. The wound healing assay showed that SPCP promoted the migration of CCD-986sk cells. Furthermore, cell cycle analysis demonstrated that SPCP promoted CCD-986sk cells to enter S and G2/M phases from G0/G1 phase. Western blot results showed that SPCP significantly upregulated the expression of cyclin D1, cyclin E, cyclin-dependent kinase 2 (Cdk2), cyclin-dependent kinase 4 (Cdk4), and cyclin-dependent kinase 6 (Cdk6), as well as inhibited the expression of CDK inhibitors p21 and p27 in CCD-986sk cells. In the meanwhile, SPCP promoted the phosphorylation and activation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt). However, the phosphorylation of Akt was significantly blocked by PI3K inhibitor (LY294002), which in turn reduced the SPCP-induced proliferation and migration of CCD-986sk cells. Therefore, the results presenting in this study suggested that SPCP can promote the proliferation and migration of CCD-986sk cells; the PI3K/Akt signaling pathway play a positive and important role in these processes.

2007 ◽  
Vol 342-343 ◽  
pp. 401-404 ◽  
Author(s):  
Yeon I Woo ◽  
Hyun Joo Son ◽  
Hye Ryeon Lim ◽  
Mi Hee Lee ◽  
Hyun Sook Baek ◽  
...  

Glucans have been reported to stimulate immunity and to promote wound healing. Adult human dermal fibroblast (aHDF) cultured in serum free (serum-starvation). Proliferation of aHDF was measured at various concentrations of β-glucan by MTT assay, and migration was observed for 36h on microscope. The result of fibroblast bioassay, β-glucan had positive influence. In this study, the direct effects of β-glucan on proliferation and migration of human dermal fibroblasts were examined in vitro. That means β-D-glucan has the effect to enhance proliferation and aHDF migration speed, and has the potential as a wound healing agent.


2021 ◽  
Vol 14 (4) ◽  
pp. 301
Author(s):  
Yayoi Kawano ◽  
Viorica Patrulea ◽  
Emmanuelle Sublet ◽  
Gerrit Borchard ◽  
Takuya Iyoda ◽  
...  

Hyaluronic acid (HA) has been known to play an important role in wound healing process. However, the effect of molecular weight (MW) of exogenously administered HA on the wound healing process has not been fully understood. In this study, we investigated HA with different MWs on wound healing process using human epidermal keratinocytes and dermal fibroblasts. Cell proliferation and migration ability were assessed by water soluble tetrazolium (WST) assay and wound scratch assay. We examined the effect of HA addition in a full-thickness wound model in mice and the gene expression related to wound healing. Proliferation and migration of HaCaT cells increased with the increase of MW and concentration of HA. Interleukin (IL-1β), IL-8 and vascular endothelial growth factor (VEGF) as well as matrix metalloproteinase (MMP)-9 and MMP-13 were significantly upregulated by high molecular weight (HMW) HA in keratinocytes. Together with VEGF upregulation and the observed promotion of HaCaT migration, HA with the MW of 2290 kDa may hold potential to improve re-epithelialization, a critical obstacle to heal chronic wounds.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2215 ◽  
Author(s):  
Da Kim ◽  
Ji Jang ◽  
Song Jang ◽  
Jungsun Lee

The neuropeptide substance P (SP) is known to stimulate wound healing by regulating the production of relevant cytokines as well as cell proliferation and migration. However, the therapeutic application of SP is limited by its low stability under biological conditions and oxidation during purification, formulation, and storage. To address this problem, we developed a novel formulation of SP as an SP gel, and investigated its wound healing activity both in vitro and in vivo. SP in SP gel was stable at various temperatures for up to 4 weeks. In vitro, SP gel exhibited more potential as a candidate wound-healing agent than SP alone, as evidenced by the observed increases in the proliferation and migration of human epidermal keratinocytes and human dermal fibroblasts. In vivo experiments showed that SP gel treatment enhanced the healing of full-thickness wounds in mice as compared to SP alone. These results demonstrate the benefits of SP gel as a promising topical agent for wound treatment.


2020 ◽  
Vol 21 (8) ◽  
pp. 2929
Author(s):  
Manira Maarof ◽  
Shiplu Roy Chowdhury ◽  
Aminuddin Saim ◽  
Ruszymah Bt Hj Idrus ◽  
Yogeswaran Lokanathan

Fibroblasts secrete many essential factors that can be collected from fibroblast culture medium, which is termed dermal fibroblast conditioned medium (DFCM). Fibroblasts isolated from human skin samples were cultured in vitro using the serum-free keratinocyte-specific medium (Epilife (KM1), or define keratinocytes serum-free medium, DKSFM (KM2) and serum-free fibroblast-specific medium (FM) to collect DFCM-KM1, DFCM-KM2, and DFCM-FM, respectively). We characterised and evaluated the effects of 100–1600 µg/mL DFCM on keratinocytes based on attachment, proliferation, migration and gene expression. Supplementation with 200–400 µg/mL keratinocyte-specific DFCM-KM1 and DFCM-KM2 enhanced the attachment, proliferation and migration of sub-confluent keratinocytes, whereas 200–1600 µg/mL DFCM-FM significantly increased the healing rate in the wound healing assay, and 400–800 µg/mL DFCM-FM was suitable to enhance keratinocyte attachment and proliferation. A real-time (RT2) profiler polymerase chain reaction (PCR) array showed that 42 genes in the DFCM groups had similar fold regulation compared to the control group and most of the genes were directly involved in wound healing. In conclusion, in vitro keratinocyte re-epithelialisation is supported by the fibroblast-secreted proteins in 200–400 µg/mL DFCM-KM1 and DFCM-KM2, and 400–800 µg/mL DFCM-FM, which could be useful for treating skin injuries.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 70
Author(s):  
Fong-Sian Lin ◽  
Jian-Jr Lee ◽  
Alvin Kai-Xing Lee ◽  
Chia-Che Ho ◽  
Yen-Ting Liu ◽  
...  

Wound healing is a complex process that requires specific interactions between multiple cells such as fibroblasts, mesenchymal, endothelial, and neural stem cells. Recent studies have shown that calcium silicate (CS)-based biomaterials can enhance the secretion of growth factors from fibroblasts, which further increased wound healing and skin regeneration. In addition, gelatin methacrylate (GelMa) is a compatible biomaterial that is commonly used in tissue engineering. However, it has low mechanical properties, thus restricting its fullest potential for clinical applications. In this study, we infused Si ions into GelMa hydrogel and assessed for its feasibility for skin regeneration applications by observing for its influences on human dermal fibroblasts (hDF). Initial studies showed that Si could be successfully incorporated into GelMa, and printability was not affected. The degradability of Si-GelMa was approximately 20% slower than GelMa hydrogels, thus allowing for better wound healing and regeneration. Furthermore, Si-GelMa enhanced cellular adhesion and proliferation, therefore leading to the increased secretion of collagen I other important extracellular matrix (ECM) remodeling-related proteins including Ki67, MMP9, and decorin. This study showed that the Si-GelMa hydrogels were able to enhance the activity of hDF due to the gradual release of Si ions, thus making it a potential candidate for future skin regeneration clinical applications.


Author(s):  
Byungcheol Lee ◽  
Jisun Song ◽  
Arim Lee ◽  
Daeho Cho ◽  
Tae Sung Kim

Visfatin, a member of the adipokine family, plays an important role in many metabolic and stress responses. The mechanisms underlying the direct therapeutic effects of visfatin on wound healing have not been reported yet. In this study, we examined the effects of visfatin on wound healing in vitro and in vivo. Visfatin enhanced the proliferation and migration of human dermal fibroblasts (HDFs) and keratinocytes, and significantly increased the expression of wound healing-related vascular endothelial growth factor (VEGF) in vitro and in vivo. Treatment of HDFs with visfatin induced activation of both extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinases 1 and 2 (JNK1/2) in a time-dependent manner. Inhibition of ERK1/2 and JNK1/2 led to a significant decrease in visfatin-induced proliferation and migration of HDFs. Importantly, blocking VEGF with its neutralizing antibodies suppressed the visfatin-induced proliferation and migration of HDFs and human keratinocytes, indicating that visfatin induces the proliferation and migration of HDFs and human keratinocytes via increased VEGF expression. Moreover, visfatin effectively improved wound repair in vivo, which was comparable to the wound healing activity of epidermal growth factor (EGF). Taken together, we demonstrate that visfatin promotes the proliferation and migration of HDFs and human keratinocytes by inducing VEGF expression and can be used as a potential novel therapeutic agent for wound healing.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jiajia Zhao ◽  
Li Hu ◽  
Jiarong Liu ◽  
Niya Gong ◽  
Lili Chen

Although adipose stem cell-conditioned medium (ASC-CM) has demonstrated the effect of promoting the cutaneous wound healing, the mechanism for this response on the effector cells (e.g., dermal fibroblasts) during the process remains to be determined. In this study, we aim to investigate the types and contents of cytokines in ASC-CM and the effects of some kinds of common cytokines in ASC-CM, such as EGF, PDGF-AA, VEGF, and bFGF, on dermal fibroblasts proliferation and migration in wound healing process. Results showed that these four cytokines had high concentrations in ASC-CM. The migration of skin fibroblasts could be significantly stimulated by VEGF, bFGF, and PDGF-AA, and the proliferation could be significantly stimulated by bFGF and EGF in ASC-CM. Additionally, ASC-CM had more obvious promoting effect on fibroblasts proliferation and migration than single cytokine. These observations suggested that ASC-CM played an important role in the cutaneous injury partly by the synergistic actions of several cytokines in promoting dermal fibroblasts proliferation and migration, and ASC-CM was more adaptive than each single cytokine to be applied in promoting the wound healing.


2008 ◽  
Vol 20 (06) ◽  
pp. 337-343
Author(s):  
Yuan-Haun Lee ◽  
Bor-Yann Chen ◽  
Feng-Huei Lin ◽  
Kun-Yu Lin ◽  
King-Fu Lin

This first-attempt study tended to inspect the cytotoxic effects of montmorillonite (MMT) or 0.01 N phosphoric acid treated MMT supplemented with L-ascorbic acid (LAA) upon human dermal fibroblasts for possible applications. Light micrographs of human dermal fibroblast cell cultures revealed that more dense black spots in larger sizes were observed when higher levels of MMT were supplemented into the fibroblast culture, indicating that more dermal fibroblasts were covered by MMT particles. Compared with the supplementation of LAA alone, this study selected mitochondrial dehydrogenase activity (MTT) assay as an indicator bioreaction to show possible cytotoxic (or allergic) responses upon human dermal fibroblasts in vitro when LAA/acid-treated MMT composites were added. Statistical analysis showed that LAA augmented with either MMT or 0.01 N phosphoric-acid-treated MMT provoked insignificant cytotoxic responses to human dermal fibroblasts. Thus, an augmentation of MMT or 0.01 N phosphoric-acid-treated MMT to LAA should be biologically feasible for possible skin applications according to this human dermal fibroblasts model.


Author(s):  
ELZA SUNDHANI ◽  
ENDAH NUR IROHIM ◽  
RUMIYANA HARTININGSIH ◽  
ERZA GENATRIKA ◽  
NUNUK ARIES NURULITA

Objective: The objective of this research was to screen phytochemical constituents and determine the activity of latex from Musa paradisiacavar. sapientum and Carica papaya L. to the process of wound healing in NIH3T3 fibroblasts cells through observations of the proliferation andmigration of cells.Materials and Methods: Screening phytochemical compounds of latex from M. paradisiaca var. sapientum and C. papaya L. used chemical reagent.Cytotoxic activity using 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyl tetrazolium bromide (MTT) method. The proliferation test used the doubling timemethod at a susceptible incubation time of 0, 24, 48, and 72 h with a concentration of 25 μg/mL–250 μg/mL. The migration test was carried out usingthe scratch wound healing method with a concentration of 25 μg/mL–250 μg/mL in the time range of 0, 12, 24, and 48 h.Results: Phytochemical compounds contained in the latex from M. paradisiaca var. sapientum (saponin and tannin) and C. papaya L. (saponin andalkaloid). The cytotoxic assay results showed that no toxic effect for NIH3T3 fibroblasts cells (IC50 >1000 μg/mL). Cell proliferation and migrationtest results showed an increase in NIH3T3 fibroblast cell proliferation and migration process compared to controls. The concentration of 250 μg/mLof latex from M. paradisiaca var. sapientum and C. papaya L. is the best to increase of proliferation and migration process of NIH3T3 fibroblast cells.Conclusion: This study concludes that the latex of M. paradisiaca var. sapientum and C. papaya L. has the potential to increase proliferation andmigration activity of NIH3T3 cells.


Sign in / Sign up

Export Citation Format

Share Document