scholarly journals High voltage circuit breaker supported on a base isolating tripod for earthquake protection

Author(s):  
B. F. Safi ◽  
L. T. Pham ◽  
M. J. Busby

The 1987 Bay of Plenty earthquake caused the total destruction of a 220 kV circuit breaker. Failures occurred in the porcelain columns supporting the Interrupter Heads. There are many other circuit breakers of the same type in the national grid. To protect these circuit breakers from earthquake damage, a proposal is made to replace the existing support stand with a base isolating tripod. On the tripod, Helical Springs and oil filled dampers are used to control the earthquake induced motion of the circuit breaker. By controlling this motion the forces on the porcelain support column are reduced to a safe level. The design is modelled using a multi degree of freedom system subjected to Response Spectrum and Time History analyses. The model produces results which are consistent with tests, and confirms the design parameters selected by a single degree of freedom approximation. The result is an economical tripod stand design which is expected to protect the circuit breaker from earthquake ground accelerations up to twice the level of the 1940 El Centro earthquake. This level of earthquake is considerably stronger than the 1987 Bay of Plenty earthquake.

Author(s):  
Tomoyo Taniguchi ◽  
Yoshihiko Toda ◽  
Yusuke Ono ◽  
Kyosuke Mukaibo

Taniguchi, et al. [1] developed an analytical method for evaluating the absolute maximum elasto-plastic displacements of multi-degree-of-freedom (MDOF) oscillators under the action of base excitation based on a modal combination. Its essence is that 1) modal frequencies, shapes and damping during yielding of any member of the MDOF oscillators are readily specified by the modal analysis with the secondary stiffness of the members being yielded, 2) assuming that a bilinear hysteresis may describe the force-displacement relationship of each mode, an equivalently linearized system consisting of a single-degree-of-freedom (SDOF) oscillator is introduced to approximate the absolute maximum elasto-plastic displacement of each mode, 3) the absolute maximum elasto-plastic displacement of the MDOF oscillator is evaluated by the Square Root of Sum of Squares rule (SRSS-rule) by combining the maximum elasto-plastic displacement of each mode approximated by the proposed equivalently linearized system. This study first provides small modification in the equivalently linearized system. Then, employing a couple of MDOF oscillators whose spring at arbitrary storey may yield and an accelerogram, the maximum elasto-plastic displacement of the MDOF oscillator is calculated by the proposed method and is compared with that computed by the time history analysis. Their comparison suggests that the proposed method can reasonably evaluate the absolute maximum elasto-plastic displacement of the MDOF oscillator subjected to earthquake excitation as the conventional SRSS-rule does that for the linear MDOF oscillators.


1997 ◽  
Vol 50 (11S) ◽  
pp. S125-S132
Author(s):  
Gustavo O. Maldonado

A stochastic equivalent linearization technique combined with a ground response spectrum approach is proposed to approximate the inelastic response of base-isolated structures. These structures are modeled by nonlinear oscillators with a single degree of freedom. The main advantage of the proposed methodology is the fast calculation of approximate results in comparison with the slow, but more accurate time history analyses. The Bouc-Wen constitutive model is used to represent the inelastic behavior of the isolators. The equations of motion are linearized by an iterative stochastic technique involving the a-priori unknown response statistics. At each iteration step, the modal contributions from one real and one pair of complex conjugate modes are combined by a response spectrum approach to obtain the maximum responses of interest. The process requires the use of conventional spectra (pseudo-acceleration and relative velocity) as well as the relative displacement spectrum of a massless oscillator. Floor response spectrum results above the isolators are calculated by the proposed approach and are compared against the results obtained by a simulation involving time history analyses.


2017 ◽  
Vol 28 (19) ◽  
pp. 2675-2687 ◽  
Author(s):  
Yunbyeong Chae ◽  
James M Ricles ◽  
Richard Sause

Numerous studies have been conducted for magneto-rheological dampers, but the application of magneto-rheological dampers in seismic design is limited due to the lack of a systematical design procedure. In this article, a simplified analysis procedure is proposed to estimate the response of a single-degree-of-freedom structure with diagonal bracing and a magneto-rheological damper without performing the time history analysis. The proposed simplified analysis procedure is based on the equivalent linear system of a magneto-rheological damper. The equivalent damping ratio and the effective period of the single-degree-of-freedom system are determined from the loss factor and the effective stiffness of the magneto-rheological damper based on the quasi-static model. Design response spectrum is utilized to calculate the displacement of the single-degree-of-freedom system. The equivalent damping ratio and the effective stiffness of the single-degree-of-freedom system are dependent on the displacement of the system; thus, the proposed procedure is iterated until the displacement from the design response spectrum converges. The accuracy of the simplified analysis procedure is evaluated by comparing the estimated response from this procedure with the response from the time history analysis. The results show a good agreement between two methods, demonstrating the robustness of the proposed simplified analysis procedure.


1995 ◽  
Vol 117 (1) ◽  
pp. 124-129 ◽  
Author(s):  
Kyosuke Ono ◽  
Hiroshi Yamamura ◽  
Takaaki Mizokoshi

This paper presents a new theoretical approach to the dynamic contact behavior and tracking characteristics of a contact slider that is one of the candidates of head design for future high density magnetic recording disk storages. A slider and its suspension are modeled as a single-degree-of-freedom vibration system. The disk surface is assumed to have a harmonic wavy roughness with linear contact stiffness and damping. From the computer simulation of the time history of the slider motion after dropping from the initial height of 10 nm, it is found that the contact vibration of the slider can attenuate and finally track on the wavy disk surface in a low waviness frequency range. As the waviness frequency increases, however, the slider cannot stay on the disk surface and comes to exhibit a variety of contact vibrations, such as sub- and super-harmonic resonance responses and finally comes to exhibit non-periodic vibration. It is also found that, among design parameters, the slider load to mass ratio and contact damping can greatly increase the surface waviness frequency and amplitude for which the stable tracking of a contact slider is possible.


Author(s):  
R. Shepherd ◽  
R. E. McConnel

Techniques of seismic load prediction
using response spectra have been in general
used for many years and the normal mode-response spectrum approach forms the background to a majority of modern earthquake resistant design codes. It is widely appreciated that in the general case of multi-degree of freedom systems, extension of the approach to the prediction of structural response in the post-elastic range
is invalid. Consequently analyses based on the system, using a time history of ground acceleration as the excitation, have been developed. However, some structures may be modelled reasonably accurately by a single degree of freedom system and in these circumstances spectral techniques may be applied justifiably to post-elastic seismic response calculations. Predictions of the post-elastic response of a viaduct pier, making use of earthquake response spectra, are described in this paper. A simple method involving consideration of conservation of energy and a second approach based on the reserve energy technique are reviewed and the behaviour predicted by applying each to the proposed pier is compared with the response determined from a computer analysis involving numerical integration of the equations of motion of the system. It is shown that in the case of the particular structure examined the results of the spectral technique considerations are of the same order as those obtained from more complex analyses, thereby supporting the contention that, at least for some structures, estimates of post-elastic seismic behaviour based on response spectra applications may be of value, particularly at the initial design stage when a full computer based analysis may not be warranted.


Author(s):  
Dali Li

Abstract This paper provides the seismic time history data precision and time interval requirement for seismic dynamic analysis. U.S.NRC SRP 3.7.1 “Seismic Design Parameters” Acceptance Criteria for Design Time Histories specifies the power spectral density Nyquist Frequency, time interval, and total duration; however, it does not have the requirement for Response Spectra. The response spectrum bandwidth is inverse-proportional to time interval of the time history. For the time interval of 0.005 seconds, the bandwidth for the response spectrum is between 0.194 Hz and 80.5 Hz; the PSD Nyquist frequency is 100 Hz. For 20.48 seconds time history, 4096 data points are required. The response spectrum between 1.28 Hz and 13.6 Hz has the peak flat magnitude value; the magnitude drops to 0.707 of the peak value from 1.28 Hz to 0.194 Hz and from 13.6 Hz to 80.5 Hz. This paper also provides the time interval requirement for various response spectrum peak flat magnitude value; i.e., the response spectrum highest flat magnitude of 27.2 Hz requires a time interval of 0.0025 seconds time history. For 20.48 seconds time history, 8192 data points are required. For CSDRS, the time interval of 0.005 seconds is adequate for the frequency range of interest between 0.36 Hz and 57.2 Hz. For HRHF, the time interval of 0.0025 seconds is required to analyze the frequency range of interest between 0.36 Hz and 114.4 Hz.


1980 ◽  
Vol 53 (1) ◽  
pp. 186-209 ◽  
Author(s):  
C. J. Derham ◽  
A. G. Thomas ◽  
J. M. Eidinger ◽  
J. M. Kelly

Abstract The concept of earthquake protection of civil engineering structures by the use of rubber mountings of low shear stiffness has been discussed by Derham, Wootton, and Learoyd. Figure 1, taken from these references, shows the predicted response of a five-story shear-wall structure to an earthquake having a peak ground acceleration of 0.3 g. The accelerations shown at the various mass levels have been computed both for the building with its foundation fixed conventionally, and for the building “floating” on natural rubber bearings. The bearing stiffness was such as to make the horizontal natural frequency of the mounted structure 0.5 Hz. The basis of computation was the response spectrum of Housner. The results were later confirmed further by using a time-history analysis. The basic conclusion from these computer studies was that the use of rubber mountings leads the building to behave in an earthquake essentially as a rigid body. The rigid body accelerations, and hence the forces, are very much smaller than the accelerations experienced by a fixed-foundation structure, particularly in upper storys. For the case studied the overall maximum acceleration of the rubber-mounted structure was calculated to be one-tenth the maximum acceleration experienced by the fixed-foundation structure.


2021 ◽  
pp. 107754632110075
Author(s):  
Junling Chen ◽  
Jinwei Li ◽  
Dawei Wang ◽  
Youquan Feng

The steel–concrete hybrid wind turbine tower is characterized by the concrete tubular segment at the lower part and the traditional steel tubular segment at the upper part. Because of the great change of mass and stiffness along the height of the tower at the connection of steel segment and concrete segment, its dynamic responses under seismic ground motions are significantly different from those of the traditional steel tubular wind turbine tower. Two detailed finite element models of a full steel tubular tower and a steel–concrete hybrid tower for 2.0 MW wind turbine built in the same wind farm are, respectively, developed by using the finite element software ABAQUS. The response spectrum method is applied to analyze the seismic action effects of these two towers under three different ground types. Three groups of ground motions corresponding to three ground types are used to analyze the dynamic response of the steel–concrete hybrid tower by the nonlinear time history method. The numerical results show that the seismic action effect by the response spectrum method is lower than those by the nonlinear time history method. And then it can be concluded that the response spectrum method is not suitable for calculating the seismic action effects of the steel–concrete hybrid tower directly and the time history analyses should be a necessary supplement for its seismic design. The first three modes have obvious contributions on the dynamic response of the steel–concrete hybrid tower.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1204
Author(s):  
Gul Ahmad Ludin ◽  
Mohammad Amin Amin ◽  
Hidehito Matayoshi ◽  
Shriram S. Rangarajan ◽  
Ashraf M. Hemeida ◽  
...  

This paper proposes a new and surge-less solid-state direct current (DC) circuit breaker in a high-voltage direct current (HVDC) transmission system to clear the short-circuit fault. The main purpose is the fast interruption and surge-voltage and over-current suppression capability analysis of the breaker during the fault. The breaker is equipped with series insulated-gate bipolar transistor (IGBT) switches to mitigate the stress of high voltage on the switches. Instead of conventional metal oxide varistor (MOV), the resistance–capacitance freewheeling diodes branch is used to bypass the high fault current and repress the over-voltage across the circuit breaker. The topology and different operation modes of the proposed breaker are discussed. In addition, to verify the effectiveness of the proposed circuit breaker, it is compared with two other types of surge-less solid-state DC circuit breakers in terms of surge-voltage and over-current suppression. For this purpose, MATLAB Simulink simulation software is used. The system is designed for the transmission of 20 MW power over a 120 km distance where the voltage of the transmission line is 220 kV. The results show that the fault current is interrupted in a very short time and the surge-voltage and over-current across the proposed breaker are considerably reduced compared to other topologies.


1999 ◽  
Vol 26 (4) ◽  
pp. 379-394 ◽  
Author(s):  
M S Medhekar ◽  
DJL Kennedy

The seismic performance of single-storey steel buildings, with concentrically braced frames and a roof diaphragm that acts structurally, is evaluated. The buildings are designed in accordance with the National Building Code of Canada 1995 and CSA Standard S16.1-94 for five seismic zones in western Canada with seismicities ranging from low to high. Only frames designed with a force modification factor of 1.5 are considered. Analytical models of the building are developed, which consider the nonlinear seismic behaviour of the concentrically braced frame, the strength and stiffness contributions of the cladding, and the flexibility, strength, and distributed mass of the roof diaphragm. The seismic response of the models is assessed by means of a linear static analysis, a response spectrum analysis, a nonlinear static or "pushover" analysis, and nonlinear dynamic time history analyses. The results indicate that current design procedures provide a reasonable estimate of the drift and brace ductility demand, but do not ensure that yielding is restricted to the braces. Moreover, in moderate and high seismic zones, the roof diaphragm responds inelastically and brace connections are overloaded. Recommendations are made to improve the seismic performance of such buildings.Key words: analyses, concentrically braced frame, dynamic, earthquake, flexible diaphragm, low-rise, nonlinear, seismic design, steel.


Sign in / Sign up

Export Citation Format

Share Document