EFFECTS OF ELECTRICAL CURRENT FREQUENCY ON THE PHYSICOCHEMICAL CHARACTERISTICS OF WASTEWATER

Author(s):  
Ba

Water plays a crucial role in the growth and development of species on Earth. Changes in the physicochemical properties of water have a large effect on human activities as well. Researchers have studied and evaluated the effects of electrical current frequency (f = 0÷2.000 Hz) on the physicochemical properties (surface tension, dynamic viscosity, specific weight) of wastewater. The effect of electric fields on the physicochemical properties of water, allows it to identify the optimal treatment regimes that promote the intensification of various processes taking place in an aqueous medium or in the presence of water.

2017 ◽  
Vol 743 ◽  
pp. 326-330
Author(s):  
Mai Trong Ba ◽  
Dodarbek Sadriddinovich Azimov ◽  
Alexander Sergeevich Knyazev ◽  
Grigory Konstantinovich Ivakhnyuk

Water plays a crucial role in the growth and development of species on Earth. Changes in the physicochemical properties of water have a large effect on the human activities. Researchers have researched and evaluated effects of electric current frequency on the physicochemical properties of distilled water samples. The effect of electric fields on the physicochemical properties of water allows it to identify the optimal treatment regimes that promote the intensification of various processes taking place in an aqueous medium or in the presence of water.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pedro Henrique Urach Ferreira ◽  
Leonardo Vinicius Thiesen ◽  
Gabriela Pelegrini ◽  
Maria Fernanda Tavares Ramos ◽  
Matheus Moreira Dantas Pinto ◽  
...  

Abstract The adoption of dicamba-tolerant soybean varieties has increased the concern and demand for new drift and volatility reduction technologies. Potential spray nozzles and adjuvants should be studied to determine its effects on drift and volatility of dicamba tank-mixtures. The objective of this study was to evaluate physicochemical characteristics of spray solutions containing dicamba; to analyze droplet size effect with air induction nozzles; and to assess dicamba volatilization on soybean plants with a proposed methodology. Treatments included dicamba only and mixtures with herbicides and adjuvants. Dicamba mixed with lecithin + methyl soybean oil + ethoxylated alcohol adjuvant had the greatest efficacy potential among treatments considering tank-mixture pH, surface tension, contact angle and droplet size. The MUG11003 nozzle produced the coarsest droplet size and was better suited for drift management among nozzle types. The proposed volatilization methodology successfully indicated dicamba volatilization in exposed soybean plants and among the evaluated treatments, it showed greater volatilization for dicamba with glyphosate + lecithin + propionic acid adjuvant.


2021 ◽  
Vol 6 (2) ◽  
pp. 242-248
Author(s):  
V. V. Chekanova ◽  
◽  
Yu. S. Pakhomova ◽  
A. M. Kompaniets ◽  
V. A. Kireev ◽  
...  

The physicochemical properties (surface tension, dynamic viscosity, crystallization and melting temperatures) of polyvinyl alcohol solutions of molecular weight 9, 31 and 72 kDa have been studied. The surface tension and the critical concentration of micelle formation were determined by the method of stalogometry, and the dynamic viscosity was determined using an Oswald viscometer. The crystallization and melting temperatures were determined in a cooled modified chamber of the UOP-6 software freezer at a rate of 2°C/min. Cryomicroscopic studies were carried out on a polarizing microscope "MIN-8". The surface tension reflects the interaction of PVA solutions with the lipid layer of biomembranes and indicates the hydrophobic properties of substances. The viscosity of PVA solutions characterizes their interaction with water molecules and reflects hydrophilic interactions. The purpose of the study is to determine the physicochemical properties of PVS that characterize the hydrophilic-hydrophobic interactions in the studied solutions and the micelle formation of PVА solutions of different molecular weights. Materials and methods. Studies of the dynamic viscosity and density of 0.1%-1% PVA solutions of molecular weight 9, 31 kDa showed that these parameters increase with increasing PVA concentration, which leads to increased hydrophilicity of the solutions. Results and discussion. It was shown that the surface tension of PVA solutions decreases with increasing concentration, which leads to a decrease in the hydrophobic properties of the polymer. It was found that in 0.5% PVА solutions of molecular weight 9 and 31 kDa the crystallization and melting temperatures decrease from -5 to -6°C. At these temperatures, crystallization and melting of the solutions begin. Conclusion. The study of micelle formation in PVА solutions of different molecular masses was carried out, surface tension isotherms were constructed, and the break point on the isotherm corresponding to the CCM was determined. The values of the critical concentration of micelle formation of PVА of molecular masses 9, 31, 72 kDa were determined. Hydrophobic links of PVА of molecular masses 9 and 31 kDa form hydrophobic cavities in the micelle structure, which can reduce recrystallization activity


2002 ◽  
Author(s):  
B.V. Savinykh ◽  
I. R. Sagbiev ◽  
A. A. Mukhamadiev ◽  
F. M. Gumerov ◽  
B. Le Niendre

2020 ◽  
Vol 10 (3) ◽  
pp. 169-184
Author(s):  
Rachna Anand ◽  
Arun Kumar ◽  
Arun Nanda

Background: Solubility and dissolution profile are the major factors which directly affect the biological activity of a drug and these factors are governed by the physicochemical properties of the drug. Crystal engineering is a newer and promising approach to improve physicochemical characteristics of a drug without any change in its pharmacological action through a selection of a wide range of easily available crystal formers. Objective: The goal of this review is to summarize the importance of crystal engineering in improving the physicochemical properties of a drug, methods of design, development, and applications of cocrystals along with future trends in research of pharmaceutical co-crystals. Co-crystallization can also be carried out for the molecules which lack ionizable functional groups, unlike salts which require ionizable groups. Conclusion: Co-crystals is an interesting and promising research area amongst pharmaceutical scientists to fine-tune the physicochemical properties of drug materials. Co-crystallization can be a tool to increase the lifecycle of an older drug molecule. Crystal engineering carries the potential of being an advantageous technique than any other approach used in the pharmaceutical industry. Crystal engineering offers a plethora of biopharmaceutical and physicochemical enhancements to a drug molecule without the need of any pharmacological change in the drug.


2002 ◽  
Vol 452 ◽  
pp. 163-187 ◽  
Author(s):  
C. L. BURCHAM ◽  
D. A. SAVILLE

A liquid bridge is a column of liquid, pinned at each end. Here we analyse the stability of a bridge pinned between planar electrodes held at different potentials and surrounded by a non-conducting, dielectric gas. In the absence of electric fields, surface tension destabilizes bridges with aspect ratios (length/diameter) greater than π. Here we describe how electrical forces counteract surface tension, using a linearized model. When the liquid is treated as an Ohmic conductor, the specific conductivity level is irrelevant and only the dielectric properties of the bridge and the surrounding gas are involved. Fourier series and a biharmonic, biorthogonal set of Papkovich–Fadle functions are used to formulate an eigenvalue problem. Numerical solutions disclose that the most unstable axisymmetric deformation is antisymmetric with respect to the bridge’s midplane. It is shown that whilst a bridge whose length exceeds its circumference may be unstable, a sufficiently strong axial field provides stability if the dielectric constant of the bridge exceeds that of the surrounding fluid. Conversely, a field destabilizes a bridge whose dielectric constant is lower than that of its surroundings, even when its aspect ratio is less than π. Bridge behaviour is sensitive to the presence of conduction along the surface and much higher fields are required for stability when surface transport is present. The theoretical results are compared with experimental work (Burcham & Saville 2000) that demonstrated how a field stabilizes an otherwise unstable configuration. According to the experiments, the bridge undergoes two asymmetric transitions (cylinder-to-amphora and pinch-off) as the field is reduced. Agreement between theory and experiment for the field strength at the pinch-off transition is excellent, but less so for the change from cylinder to amphora. Using surface conductivity as an adjustable parameter brings theory and experiment into agreement.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (11) ◽  
pp. 39-47
Author(s):  
V. K Sharma ◽  
◽  
B. Mazumder ◽  
P. P. Sharma

The consumption of edible products strongly recommends the regular hygiene of oral cavity. Various dental products of allopathic and herbal origin are used as dentifrices. The dentifrices are considered safe and effective in terms of cleansing effect of oral cavity and antimicrobial effect against microbes causing bad smell and diseases such as gingivitis, pyorrhea etc. These characteristics of preparations are basically related to physicochemical properties of ingredients present in their composition and some how on directions of their use. In the present study, the marketed allopathic dentifrices coded as Brand I and II and herbal tooth powders coded as Brand III and IV were selected to analyze the impact of physicochemical properties of incorporated ingredients on their cleansing efficiency. The physicochemical characteristics studied were pH, bulk volume, tapped volume, tapped density, bulk density, true density, porosity, flowability, compressibility, compactability, cohesiveness, dispersability, Carr’s index, Hausner’s ratio, water soluble content, alcohol soluble content, foaming index, particle rearrangement behaviour and particle rearrangement constant. The antimicrobial effect of these powders was studied against Staphylococcus sorbinus, Staphylococcus salivarius and Lactobacillus acidophilus. It was observed that some of the physicochemical properties of all powders were different from each other. Marked antimicrobial effect of tooth powders was observed against pathogens. In all preparations, remarkable foaming index was analyzed that was generally considered responsible for cleansing effect.


2017 ◽  
Vol 41 (1) ◽  
pp. e12638 ◽  
Author(s):  
Domagoj Gabrić ◽  
Francisco Barba ◽  
Shahin Roohinejad ◽  
Seyed Mohammad Taghi Gharibzahedi ◽  
Milivoj Radojčin ◽  
...  

Author(s):  
Sharen Gill ◽  
Poonam Arora

Background: Many formulation strategies are presently in development in pharmaceutical industry. However, the formation of pharmaceutical adducts is considered to be the most appropriate technique for improving the drug solubility and dissolution as no chemical bond changes are involved in this technique.Purpose: This technique is highly used for compounds which are not able to give viable formulation products with standard techniques such as salt formation and polymorph generation. In the present study, this method is applied to repaglinide, which is an hypoglycemic agent, with compromised solubility. Methods: The adducts were prepared by slow evaporation method and characterized using DSC, FTIR and PXRD studies. The solubility and dissolution studies were carried out to determine the increased solubility of drug in adducts. The drug amount interacted with coformers has also been determined. Results: The present study demonstrates the improvement in solubility and thus dissolution of repaglinide in adducts.Conclusion: The adducts formed in the present study can be further exploited to prepare formulation of repaglinide adducts with better physicochemical characteristics.


Author(s):  
Delia Mihaela TRUTA ◽  
Maria TOFANA ◽  
Sonia Ancuţa SOCACI ◽  
Rowena CHELEMAN

The aim of this work is to analyze the chemical and physical properties of balsamic vinegar, in order to improve the chemical information about this product, useful for its authentication and quality evaluation. Using three balsamic vinegars purchased in local markets as samples, this study investigated the labeling and the physicochemical properties of commercial concentrated balsamic vinegar in order to understand their production method and quality. Two of the samples were balsamic vinegars from Modena (BVM) and the third was a balsamic vinegar from Kalamata (BVK). According to the labels, all the balsamic vinegars samples were made of grape must and had an acidity of 6%. The appearance of the samples of vinegar differed significantly, but the acidity from the label was the same for all. Since people are paying much more attention to health, the number of concentrated vinegar products is expected to increase in the future. Thus, appropriate rules and physicochemical properties are required to regulate vinegar production and quality.


Sign in / Sign up

Export Citation Format

Share Document