scholarly journals Analyzing the Effect of Fuel Injection Timing and Injection Duration on Performance and Emissions in Diesel Engines

2020 ◽  
Vol 8 (1) ◽  
pp. 38-52 ◽  
Author(s):  
Kubilay Bayramoğlu ◽  
Mustafa Nuran
2019 ◽  
Vol 19 (6) ◽  
pp. 1346-1354 ◽  
Author(s):  
Yixiu Zhao ◽  
Kangping Cui ◽  
Jingning Zhu ◽  
Shida Chen ◽  
Lin-Chi Wang ◽  
...  

Author(s):  
Steven G. Fritz ◽  
John C. Hedrick ◽  
Tom Weidemann

This paper describes the development of a low emissions upgrade kit for EMD GP20D and GP15D locomotives. These locomotives were originally manufactured in 2001, and met EPA Tier 1 locomotive emission regulations. The 1,491 kW (2,000 HP) EMD GP20D locomotives are powered by Caterpillar 3516B engines, and the 1,119 kW (1,500 HP) EMD GP15D locomotives are powered by Caterpillar 3512B engines. CIT Rail owns a fleet of 50 of these locomotives that are approaching their mid-life before first overhaul. Baseline exhaust emissions testing was followed by a low emissions retrofit development focusing on fuel injection timing, crankcase ventilation filtration, and application of a diesel oxidation catalyst (DOC), and then later a diesel particulate filter (DPF). The result was a EPA Tier 0+ certification of the low emissions upgrade kit, with emission levels below EPA Line-Haul Tier 3 NOx, and Tier 4 HC, CO, and PM levels.


2015 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D.N. Basavarajappa ◽  
N. R. Banapurmath ◽  
S.V. Khandal ◽  
G. Manavendra

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1846-1852 ◽  
Author(s):  
HYUN-BAE JEON ◽  
TAE-HOON SONG ◽  
SUNG-HO PARK ◽  
SUN-CHUL HUH ◽  
WON-JO PARK

This experimental study investigates the fracture characteristics of the camshaft made with newly developed SM53C material. As part of the countermeasure, use the surface hardening heat treatment. Cam shaft which is a part of automobile engine is very essential when traveling and significant to fuel injection timing. Stiffness and efficiency are important for automobile sash which have a durability of the engine. High hardness and durability are necessary, because engine output is affected by cam shaft directly. So, high-frequency induction hardening is very important because of increasing the surface strength. The shape of hardening depth, hardened structure, hardness, and fracture characteristics of SM53C composed by carbon steel are also investigated.


Sign in / Sign up

Export Citation Format

Share Document