scholarly journals Spate Irrigation Potential Assessment for Ethiopian Watershed

2020 ◽  
Vol 12 (7) ◽  
pp. 135
Author(s):  
Kedir Mohammed Bushira ◽  
Yassin Mohammed Abdule

In the low lands of Logia sub basin, Ethiopia, because of shortage of rain to fully grow crops, irrigation is an obligation in general and the presence of seasonal rivers flowing in the region in particular makes flood utilization ideal for spate irrigation. The subjects of the present study were to assess the spate irrigation potential of Logiya watershed that has been brought under irrigation on the basis of flood water availability and land suitability. A GIS based technique combined with analytical hierarchy process (AHP) was applied to access the potential of the watershed for spate irrigation development. Potentially suitable sites for spate irrigation development were assessed for Maize, Sorghum and Tomato crops. Spate irrigation area was evaluated based on land use/cover, slope and soil suitability. CROPWAT software was used to estimate the reference crop evapotranspiration, effective rainfall, net irrigation and gross irrigation water requirement. The suitability model developed shows that only 26.15% of the total area falls under marginally to highly suitable categories for spate irrigation development. The Logiya seasonal river flow from July to October was 301.64 Mm3. However, the annual flood water available from the river was less than the total GIWR by 8.77 Mm3 during growing period. The surplus water available from the river before July might be stored and used for irrigation during water deficit period during growing seasons.

2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Ziyang Zhao ◽  
Hongrui Wang ◽  
Cheng Wang ◽  
Wangcheng Li ◽  
Hao Chen ◽  
...  

The impact of global climate change on agroecosystems is growing, affecting reference crop evapotranspiration (ET0) and subsequent agricultural water management. In this study, the climate factors temporal trends, the spatiotemporal variation, and the climate driving factors of ET0 at different time scales were evaluated across the Northern Yellow River Irrigation Area (NYR), Central Arid Zone (CAZ), and Southern Mountain Area (SMA) of Ningxia based on 20 climatic stations’ daily data from 1957 to 2018. The results showed that the Tmean (daily mean air temperature), Tmax (daily maximum air temperature), and Tmin (daily minimum air temperature) all had increased significantly over the past 62 years, whilst RH (relative humidity), U2 (wind speed at 2 m height), and SD (sunshine duration) had significantly decreasing trends across all climatic zones. At monthly scale, the ET0 was mainly concentrated from April to September. And at annual and seasonal scales, the overall increasing trends were more pronounced in NX, NYR, and SMA, while CAZ was the opposite. For the spatial distribution, ET0 presented a trend of rising first and then falling at all time scales. The abrupt change point for climatic factors and ET0 series was obtained at approximately 1990 across all climatic zones, and the ET0 had a long period of 25a and a short period of 10a at annual scale, while it was 15a and 5a at seasonal scale. RH and Tmax were the most sensitive climatic factors at the annual and seasonal scales, while the largest contribution rates were Tmax and SD. This study not only is important for the understanding of ET0 changes but also provides the preliminary and elementary reference for agriculture water management in Ningxia.


Author(s):  
I Komang Damar Jaya ◽  
Sudirman Sudirman ◽  
Rosmilawati Rosmilawati

Recent climate variability affects maize production in dryland areas. This study aimed to explore potentials of strip intercropping of maize-pulse crops in improving productivity of dryland areas. The study was conducted in dryland area of Gumantar village, North Lombok (8.253654 S, 116.285695 E). Soil in that area was categorized as poor soil with the following properties: 0.46% organic matter, 0.05% N total (Kejdhal), available P 11.25 ppm (Olsen) and exchangeable K 0.77 me%, pH 7.0 and field capacity 29% (%/V). Rainfall data were collected during the growing seasons of 2016/2016 and 2016/2017. A field experiment of maize-pulse crops strip intercropping was conducted during a dry season of 2016. The component crops in the strip intercropping were maize NK212, maize NK7328, mungbean Vima-1 and groundnut Hypoma-1. All component crops were grown as monocropping and strip intercropping of maize-pulse crops in 8.4 x 5.0m plot size for each treatment. To measure productivity of the strip intercropping, relative yield total (RYT) and benefit to cost ratio (B/C) were calculated. They were great variations in rainfall in the last two years. From the experiment, data showed that all the strip intercropping treatments have RYT and B/C values >1 meaning that strip intercropping of maize-pulse crops is more productive than monocropping and is feasible to be practiced in dryland areas. With the short growing period and their drought tolerant nature of the pulse crops, especially mungbean, the strip intercropping can be used to fight climate variability impacts in dryland areas.


2014 ◽  
Vol 14 (11) ◽  
pp. 5369-5391 ◽  
Author(s):  
L. Hörtnagl ◽  
I. Bamberger ◽  
M. Graus ◽  
T. M. Ruuskanen ◽  
R. Schnitzhofer ◽  
...  

Abstract. An overview of acetaldehyde exchange above a managed temperate mountain grassland in Austria over four growing seasons is presented. The meadow acted as a net source of acetaldehyde in all 4 years, emitting between 7 and 28 mg C m−2 over the whole growing period. The cutting of the meadow resulted in huge acetaldehyde emission bursts of up to 16.5 nmol m−2 s−1 on the day of harvesting or 1 day later. During undisturbed conditions both periods with net uptake and net emissions of acetaldehyde were observed. The bidirectional nature of acetaldehyde fluxes was also reflected by clear diurnal cycles during certain time periods, indicating strong deposition processes before the first cut and emission towards the end of the growing season. The analysis of acetaldehyde compensation points revealed a complex relationship between ambient acetaldehyde mixing ratios and respective fluxes, significantly influenced by multiple environmental parameters and variable throughout the year. As a major finding of this study, we identified both a positive and negative correlation between concentration and flux on a daily scale, where soil temperature and soil water content were the most significant factors in determining the direction of the slope. In turn, this bidirectional relationship on a daily scale resulted in compensation points between 0.40 and 0.54 ppbv, which could be well explained by collected ancillary data. We conclude that in order to model acetaldehyde fluxes at the site in Neustift on a daily scale over longer time periods, it is crucial to know the type of relationship, i.e., the direction of the slope, between mixing ratios and fluxes on a given day.


Sign in / Sign up

Export Citation Format

Share Document