scholarly journals The Impact of Diet on Expression of Genes Involved in Innate Immunity in Goat Blood

2016 ◽  
Vol 8 (3) ◽  
pp. 1 ◽  
Author(s):  
Mulumebet Worku ◽  
Ahmed Abdalla ◽  
Sarah Adjei-Fremah ◽  
Hamid Ismail

<p>Sericea Lespedeza (SL), is a high-quality, low input forage that suppresses gastro-intestinal parasites in goats. The effect of dietary SL on the expression of genes involved in innate immunity in goats has not been established. The objective of this study was to evaluate the impact of a diet containing SL on the expression of genes involved in innate immunity in goat blood. Blood was collected by jugular venipuncture from goats fed a diet of 75% SL (n = 9) and a control group (n = 7), fed a SL free diet. Blood was used to evaluate expression of (CD-14, TLR-2, TLR-4, IL-10, IL-8, IL-2, INF-r, and TNF-a). Serum was extracted and used for evaluation of the secretion of pro-inflammatory cytokines (TNF-a, IFNr, granulocyte colony stimulating factor (GCSF), granulocyte-macrophage colony-stimulating factor (GMCSF), IL-1a, IL-8, IP-10 and RANTES) using a commercial ELISA kit. The level of gene expression of CD-14, TLR-2, TLR-4, IL-10, IL-8, IL-2, INF-r, and TNF-a was higher in treated animals compared to control. The <em>Sericea Lespedeza</em> diet affected the secretion of pro-inflammatory cytokines by increasing the serum levels of TNF-a, IFNr, GCSF, GMCSF, IL-1a, IP-10 (<em>P</em> &lt; 0.0002), and by decreasing (<em>P</em> &lt; 0.0001) IL-8 and RANTES in blood from goats fed SL. This suggests that dietary tannins modulate gene expression and may affect the goat's innate immune response in blood. Further research is needed to understand and harness the effect of dietary condensed tannins to modulate innate immunity in goats.</p>

2017 ◽  
Vol 29 (1) ◽  
pp. 185 ◽  
Author(s):  
B. C. S. Leao ◽  
N. A. S. Rocha Frigoni ◽  
P. C. Dall'Acqua ◽  
M. Ambrogi ◽  
G. B. Nunes ◽  
...  

This study was conducted to evaluate the impact of supplementation during in vitro maturation (IVM) with linolenic acid (ALA), l-carnitine (L-car), or the combination of both supplements on the embryo intracellular lipid content and cryotolerance, as well as in the embryo expression of genes involved in lipid metabolism (lipogenesis regulation: SCD1, FASN, and SREBP1; and β-oxidation pathway: CPT1B and CPT2). Cumulus-oocyte complexes (n = 1076) were IVM for 22 h at 38.5°C and 5% CO2 in air, in TCM-199 medium with bicarbonate, hormones, and 10% FCS (control group), supplemented with 100 μM ALA (ALA group), 5 mM L-car (L-car group), or a combination of 100 μM ALA + 5 mM L-car (ALA + L-car group). After IVF, presumptive zygotes were in vitro cultured in SOFaa medium supplemented with 5 mg mL−1 BSA and 2.5% FCS, at 38.5°C and 5% CO2 in air during 7 days. Cleavage and blastocyst rates were evaluated on Day 3 and 7, respectively (IVF = Day 0). At Day 7, the blastocysts were stained with the lipophilic dye Sudan Black B (n = 60), vitrified/warmed (n = 260; Ingámed® protocol, Maringa-PR, Brazil), or collected for analysis of gene expression (n = 180). Embryonic development were analysed by ANOVA and the multiple comparisons of means were determined by Tukey’s test. The embryonic re-expansion data were subjected to chi-square test and the differences in gene expression among groups were evaluated by Duncan’s multiple range test (P < 0.05). Data are presented as means ± standard error means. There was no effect (P > 0.05) of the supplements used during IVM on cleavage (79.54 ± 2.76% to 82.16 ± 1.13%) and blastocyst rates (29.03 ± 3.07% to 30.46 ± 2.01%). Similarly, the intracellular lipid content in Day-7 blastocysts (1.03 ± 0.04 to 1.15 ± 0.07 pixels) and the embryonic cryotolerance, assessed by the re-expansion rates after 24 h (67.3 to 78.3%) hatching rates after 48 h (11.5 to 25.5%) of post-warming culture, were unaffected (P > 0.05) by the supplements of IVM medium. Although the treatments did not alter (P > 0.05) the expression of CPT1B and CPT2 genes, the expression of FASN gene was decreased (P < 0.05) in the ALA group and the expression of SREBP1 gene was decreased (P < 0.05) in the ALA and L-car groups. The expression of the gene SCD1 was reduced (P < 0.05) in all treatments compared with the control group. Thus, despite the lack of effects of the treatments performed during IVM on the intracellular lipid content and cryotolerance of the embryos derived from the treated oocytes, a reduction in the expression of genes related to lipogenesis was observed in Day-7 blastocysts. These results suggest that treatments performed in the oocytes during IVM may have prolonged effects, affecting the subsequent expression of genes in embryos. Further studies are needed to determine the mechanisms related to the differentiation of the oocyte machinery during maturation. Financial support was provided by FAPESP (#2012/10084–4 and #2013/07382–6).


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3752
Author(s):  
Ru Li ◽  
Annie Wen ◽  
Jun Lin

In the presence of a primary tumor, the pre-metastatic niche is established in secondary organs as a favorable microenvironment for subsequent tumor metastases. This process is orchestrated by bone marrow-derived cells, primary tumor-derived factors, and extracellular matrix. In this review, we summarize the role of pro-inflammatory cytokines including interleukin (IL)-6, IL-1β, CC-chemokine ligand 2 (CCL2), granulocyte-colony stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor (GM-CSF), stromal cell-derived factor (SDF)-1, macrophage migration inhibitory factor (MIF), and Chemokine (C–X–C motif) ligand 1 (CXCL1) in the formation of the pre-metastatic niche according to the most recent studies. Pro-inflammatory cytokines released from tumor cells or stromal cells act in both autocrine and paracrine manners to induce phenotype changes in tumor cells, recruit bone marrow-derived cells, and form an inflammatory milieu, all of which prime a secondary organ’s microenvironment for metastatic cell colonization. Considering the active involvement of pro-inflammatory cytokines in niche formation, clinical strategies targeting them offer ways to inhibit the establishment of the pre-metastatic niche and therefore attenuate metastatic progression. We review clinical trials targeting different inflammatory cytokines in patients with metastatic cancers. Due to the pleiotropy and redundancy of pro-inflammatory cytokines, combined therapies should be designed in the future.


Blood ◽  
2006 ◽  
Vol 109 (3) ◽  
pp. 936-943 ◽  
Author(s):  
Thomas Lehrnbecher ◽  
Martin Zimmermann ◽  
Dirk Reinhardt ◽  
Michael Dworzak ◽  
Jan Stary ◽  
...  

Abstract Children with acute myelogenous leukemia (AML) have a high risk of infectious complications that might be reduced by prophylactic granulocyte colony-stimulating factor (G-CSF). However, G-CSF could induce AML blast proliferation. The prospective randomized trial AML-BFM 98 investigated the impact of G-CSF on hematopoetic recovery and infectious complications (primary endpoints) and on outcome (secondary endpoint) in children (aged 0-18 years) with de novo AML. Patients with more than 5% blasts in day-15 bone marrow or with FAB M3 were not included. Between 1998 and 2003, 161 children with AML were randomized to receive G-CSF after inductions 1 and 2, whereas 156 patients were assigned to the control group. Time of neutropenia after inductions 1 and 2 was significantly shorter in the G-CSF group (23 vs 18 days and 16 vs 11 days; P = .02 and = .001, respectively). G-CSF did not decrease the incidence of febrile neutropenia (72 and 36 patients vs 78 and 37 patients, respectively), microbiologically documented infections (27 and 25 patients vs 36 and 19 patients, respectively) and infection-associated mortality (5 vs 2 patients). Both groups had similar 5-year event-free survival (EFS; 59% ± 4% vs 58% ± 4%). Since G-CSF does not influence the risk of infectious complications or outcome in children undergoing therapy for AML, one cannot advocate the routine use of G-CSF in this patient group.


2021 ◽  
Vol 11 (11) ◽  
pp. 4723
Author(s):  
Rosaria Scudiero ◽  
Chiara Maria Motta ◽  
Palma Simoniello

The cleidoic eggs of oviparous reptiles are protected from the external environment by membranes and a parchment shell permeable to water and dissolved molecules. As a consequence, not only physical but also chemical insults can reach the developing embryos, interfering with gene expression. This review provides information on the impact of the exposure to cadmium contamination or thermal stress on gene expression during the development of Italian wall lizards of the genus Podarcis. The results obtained by transcriptomic analysis, although not exhaustive, allowed to identify some stress-reactive genes and, consequently, the molecular pathways in which these genes are involved. Cadmium-responsive genes encode proteins involved in cellular protection, metabolism and proliferation, membrane trafficking, protein interactions, neuronal transmission and plasticity, immune response, and transcription regulatory factors. Cold stress changes the expression of genes involved in transcriptional/translational regulation and chromatin remodeling and inhibits the transcription of a histone methyltransferase with the probable consequence of modifying the epigenetic control of DNA. These findings provide transcriptome-level evidence of how terrestrial vertebrate embryos cope with stress, giving a key to use in population survival and environmental change studies. A better understanding of the genes contributing to stress tolerance in vertebrates would facilitate methodologies and applications aimed at improving resistance to unfavourable environments.


2020 ◽  
Vol 15 (1) ◽  
pp. 742-752
Author(s):  
Pengcheng Ren ◽  
Ming Zhang ◽  
Shuren Dai

AbstractBackgroundThe aim of this study was to evaluate the therapeutic effects of coronary granulocyte colony-stimulating factor (G-CSF) on rats with chronic ischemic heart disease (CIHD).MethodsThirty healthy rats were randomly divided into control, subcutaneous and intracoronary G-CSF injection groups (n = 10) after the CIHD model was established. Left ventricular ejection fraction (LVEF), myocardial injury area, myocardial perfusion area and viable myocardium were observed by coronary angiography, dual-isotopic myocardial imaging and first-pass delayed myocardial perfusion magnetic resonance imaging (MRI) before modeling as well as 2 and 4 weeks after surgery.ResultsThe peak times of peripheral blood and subcutaneous G-CSF levels were 3 and 5 days after mobilization, respectively. The peripheral blood CD34+/CD133+ cell ratio of subcutaneous or intracoronary G-CSF injection group significantly exceeded that of the control group (P < 0.05). The distal stenosis degrees of target lesions in subcutaneous and intracoronary G-CSF injection groups were significantly lower than that of the control group (P < 0.05). Compared with the situation before mobilization, LVEF was significantly improved after 2 weeks in intracoronary and subcutaneous G-CSF injection groups (P < 0.01). Their infarcted myocardial areas were reduced, the left ventricular remodeling was relieved, the percentage of viable myocardium was increased, angiogenesis was promoted and cardiomyocyte apoptosis was inhibited.ConclusionIntracoronary G-CSF injection is safe and effective as subcutaneous injection, improving the cardiac function of CIHD rats.


Sign in / Sign up

Export Citation Format

Share Document