scholarly journals Hydrocracking of Nyamplung Oil (Calophyllum inophyllum 0il) Using CoMo/γ-Al2O3 and CoMo/SiO2 Catalysts

2015 ◽  
Vol 9 (7) ◽  
pp. 43
Author(s):  
Rismawati Rasyid ◽  
Adrianto Prihartantyo ◽  
Mahfud Mahfud ◽  
Achmad Roesyadi

The purpose of this research is to study hydrocracking process of nyamplung oil using 5% and 15% CoMo catalyst and supported on γ-Al2O3 and SiO2. Catalyst was prepared using wet impregnation method and calcined at 500oC for 5 hours without sulfidation process. The X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were performed to analyze the crystalinity and surface morphology. Based on the XRD that MoO2 was deposited on the surface of the catalysts. The hydrocracking of nyamplung (Calophyllum inophyllum) oil was conducted in Parr pressure reactor at 350oC and 3 MP. Hydrocracking product was analyzed by using Gas Cromotography – Mass Spectrometry (GCMS). The highest catalytic activity was obtained by 15% loading CoMo over γ-Al2O3 and the highest yields were 39.58% gasoil, 31.32% gasoline and 7.44% kerosene.

2015 ◽  
Vol 35 (01) ◽  
pp. 69 ◽  
Author(s):  
Zuhra Zuhra ◽  
Husni Husin ◽  
Fikri Hasfita ◽  
Wahyu Rinaldi

Biodiesel, as a potential substituted energy, has attracted a great attention in recent years, which can be produced from o3 renewable sources and provides complete combustion with less gaseous pollutant emission. Biodiesel is produced conventionally via transesterification of vegetable oils using homogeneous catalysts, e.g. KOH, NaOH, and HaSO4. The homogeneous catalytic process, however, provides some disadvantages, such as, a huge production of wastewater from washing process of catalyst residues and non-reusability of the catalysts. In order to circumvent most of the economical and environmental drawbacks of homogeneous process, heterogeneous catalysts, this can be easily separated from reaction mixture by filtration. These catalysts are less corrosive and more environment-friendly. The objective of this work was to develop the effectivity of using waste of cockle (Clinocardium nuttalli) shell as a heterogeneous base catalyst for the biodiesel production. The catalysts were prepared by simple calcination methods, at temperaturesof 600, 700, 900 oC, and without calcination. Calcined catalysts were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) technique. Transesterification process of Calophyllum inophyllum L.oil and o methanol were carried out under bath reactor over the cockle shellcatalysts to produce biodiesel. The XRD patterns depicted that CaCO3 was successfully converted into CaO. SEM recorded demonstrates that the particle catalyst become smaller after heating. The highest activity was found at calcined catalyst of 900 oC, with the yield of biodiesel reaching 87.4% during 3 hours. The solid catalyst from waste cockle shell was proven to be durable for the transesterification of edible oil.Keywords: Cockle shell, biodiesel, heterogeneouscatalyst, Calophyllum inophyllum L. oil, transesterification ABSTRAKBiodiesel, sebagai sumber energi potensial telah menarik perhatian dalam beberapa tahun terakhir, karena dapat diproduksi dari sumber terbaharukan dan menghasilkan polutan yang rendah. Secara konvensional, biodiesel diproduksi melalui transesterifikasi minyak nabati menggunakan katalis homogen, yaitu: KOH, NaOH, dan H2SO4. Proses katalitik homogen memiliki beberapa kekurangan, seperti: banyak mengeluarkan air buangan dari pencucian residu katalis dan tidak dapat digunakan kembali. Untuk mengatasi kekurangan penggunaan katalis homogen baik secara ekonomi maupun lingkungan ditempuh dengan mengembangkan katalis heterogen atau katalis padat, yang dapat dengan mudah dipisahkan dari campuran reaksi secara filtrasi. Katalis ini juga rendah korosi dan lebih ramah lingkungan. Tujuan dari penelitian ini adalah untuk mengetahui efektivitas penggunaan abu kulit kerang yang mengandung CaO (kalsium oksida) sebagai katalis heterogen terhadap rendemen biodiesel. Bahan baku untuk pembuatan biodiesel adalah minyak nyamplung. Katalis disiapkan dengan metode kalsinasi sederhana pada temperatur: 600, 700, 900 oC, dan tanpa kalsinasi. Setelah kalsinasi, katalis dikarakterisasi denganmetode X-ray Diffraction (XRD) dan Scanning Electron Microscopy (SEM). Reaksi transesterifikasi minyak nyamplung dengan metanol dilangsungkan di dalam reaktor berpengadukmenggunakan katalis padat dari kulit kerang. Dari pola XRD mengindikasikan bahwa CaCO3 terkonversi dari kulit kerang sempurna menjadi CaO ketika kulit kerang dikalsinasi pada suhu 900 oC. Hasil rekaman SEM diperoleh ukuran partikel katalis setelah dipijar menjadi kecil. Aktivitas katalis tertinggi diperoleh pada penggunaan abu kulit kerang yang dikalsinasi pada suhu 900 oC. Rendemenmetil ester tertinggi mencapai 87,4% setelah 3 jam reaksi. Katalis abu kulit kerang telah terbukti dapat digunakan untuk reaksi transesterifikasi minyak nabati menjadi biodiesel.Kata kunci: Kulit kerang, biodiesel, katalis heterogen, kalsium oksida, minyak nyamplung, transesterikasi


2006 ◽  
Vol 70 (3) ◽  
pp. 299-307 ◽  
Author(s):  
R.L. Frost ◽  
M.L. Weier ◽  
G.A. Ayoko ◽  
W. Martens ◽  
J. Čejka

AbstractA uranopilite from The South Alligator River, Northern Territory, Australia, has been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) with EDAX attachment, and thermogravimetry in conjunction with evolved gas mass spectrometry. The XRD shows that the mineral is a pure uranopilite with few if any impurities. The SEM images show that the uranopilite consists of elongated crystals, up to 50μm long and 5 μm wide. Thermogravimetry combined with mass spectrometry shows that dehydration occurs at ∼31°C resulting in the formation of metauranopilite. The first dehydration step over 20–71°C corresponds to a decrease of 5.4 wt.%, equivalent to 6.076 H2O. The second dehydration step, over the temperature range 71 –162.4°C corresponds to a decrease of 4.7 wt.%, equivalent to 5.288 H2O, making a total of 11.364 moles of H2O, close to 12 H2O for uranopilite.Dehydroxylation takes place over the temperature range 80–160°C. The loss of sulphate occurs at higher temperatures in two steps at 622 and 636°C. A mass loss also occurs at 755°C, accounted for by evolved oxygen.


2013 ◽  
Vol 16 (3) ◽  
pp. 141-145
Author(s):  
M.L. Hernandez-Pichardo ◽  
R. Gonzalez-Huerta ◽  
P. del Angel ◽  
E. Palacios-Gonzalez ◽  
M. Tufiño-Velazquez ◽  
...  

Platinum reduction on Pt/C catalysts was studied on samples prepared by the impregnation method using different Pt precursors and reducing agents such as ethanol, sodium borohydride and ethanol-UV light (photo-assisted reduction), in order to compare the efficiency of the different reducing agents. The influence of the reduction level of the platinum species on the electrochemical behavior of these catalysts has been determined. The catalysts were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and linear and cyclic voltammetry. The results show that the reduction level depends mainly on the platinum precursor. Moreover, it was found that the higher electrochemical activity was found using catalysts reduced with ethanol, whereas by using NaBH4 as the reducing agent, the total reduction of the platinum precursor is very difficult in same synthesis conditions. The analysis of the XPS results shows that samples reduced with ethanol presented the lower PtOx/Pt reduction ratio.


2011 ◽  
Vol 396-398 ◽  
pp. 2033-2037 ◽  
Author(s):  
Zhi Fang Jia ◽  
Fu Min Wang ◽  
Ying Bai ◽  
Ning Liu

The InVO4-based photocatalysts loaded with metal oxides (Fe2O3, CuO, NiO) were synthesized by wet impregnation method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy(SEM), UV-vis diffuse reflectance spectroscopy(DRS). The influence of different metal oxides loading (Fe2O3, CuO, NiO) on the photocatalytic activity for photocatalytic reduction of CO2 was discussed. It is found that Fe2O3-loaded InVO4 significantly enhance the methanol yield through promoting the effective separation of photoinduced electron-hole pairs.


2016 ◽  
Vol 8 (7) ◽  
pp. 1637-1645 ◽  
Author(s):  
Nati Salvadó ◽  
Salvador Butí ◽  
Trinitat Pradell ◽  
Victòria Beltran ◽  
Gianfelice Cinque ◽  
...  

Micro-Infrared Spectroscopy (μSR-FTIR) and X-ray diffraction (μSR-XRD) with synchrotron light, Gas Chromatography/Mass Spectrometry (CG/MS), Optical Microscopy (OM) and Scanning Electron Microscopy (SEM/EDS) were used to obtain the distribution of calcium salts of low molecular weight organic acids (LMWOA) in micro-layered micro-samples.


2019 ◽  
Vol 17 (1) ◽  
pp. 1061-1070
Author(s):  
Khoirina Dwi Nugrahaningtyas ◽  
Nining Rahmawati ◽  
Fitria Rahmawati ◽  
Yuniawan Hidayat

AbstractThe synthesis of CoMo/Mordenite (CoMo/MOR) catalysts was conducted using a co-impregnation method at a various Co/Mo ratios. The produced catalysts were then characterized by X-ray diffraction, total acidity analysis, and scanning electron microscopy. The activity of the catalyst in a hydrotreatment reaction was evaluated by applying the catalyst as a reduced-catalyst to the hydrocracking (HC) reaction of anisole molecules. Analysis of the diffraction data using the Le Bail refinement technique showed that the metal phase was successfully impregnated into the MOR. In addition, increasing the metal content resulted in an increase in the acidity of the catalysts and changed the morphology of the catalysts from homogeneous to heterogeneous with larger particle size. According to the data of GCMS, it is known that the catalysts successfully removed methyl group of anisole molecules. Hydrotreatment reaction with the prepared-catalyst produced 4.77% of phenols. It is 122 % higher than the reaction with MOR catalyst.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yuniawan Hidayat ◽  
Khoirina Dwi Nugrahaningtyas ◽  
Priska Julia Hendrastuti

The amount of loaded Co-Mo metal on the Y-Zeolite Ultra Stable (USY) was increased by the addition of activated carbon in the pre-impregnation process. USY modification was done by adding activated carbon to USY as much as 10 wt%. The process of adding activated carbon is carried out by three methods, i.e., grinding with sucrose binder (ACU1), without sucrose (ACU2), and conducting by ball milling (ACU3). Wet impregnation method was employed to disperse the Co and Mo, sequentially. Composites were characterized using Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), and surface area analyzer (SAA). Metal dispersions were observed by X-ray fluorescence (XRF). The FTIR suggests an interaction between USY and activated car-bon, while the XRD result indicated the none structural transformation of USY zeolite. The SAA analysis showed an increased total pore radius with the activated carbon addition. The XRF confirmed the increasing of total metals dispersion of 6.25% (ACU1); 5.48%(ACU2); 5.18% (ACU3); compare to USY origin with 3.28% metals loaded.


2013 ◽  
Vol 845 ◽  
pp. 421-425 ◽  
Author(s):  
Raihan Mahirah Ramli ◽  
Chong Fai Kait ◽  
Abdul Aziz Omar

Titania nanoparticles, TiO2 were synthesized via microemulsion method prior to monometallic (Fe, Cu) or bimetallic (CuFe) incorporation using wet impregnation method. The prepared photocatalysts were characterized using X-ray diffraction, field emission scanning electron microscopy, diffuse reflectance UV-Vis spectroscopy and point of zero charge. The addition of metals, especially Cu enhanced the absorbance in the visible region. The lowest band gap was observed for the bimetallic Cu-Fe/TiO2 (2.77 eV) compared to bare TiO2 (3.05 eV). The performance of the photocatalysts for photodegradation of diisopropanolamine (DIPA) at pH 8 was determined using a batch glass reactor under simulated sunlight (980 W/m2). The best performance was displayed by Cu-Fe/TiO2 with the highest DIPA removal of 92%.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Sign in / Sign up

Export Citation Format

Share Document