scholarly journals Investigation of the Effect of Using Activated Sludge Treated with Acetic Acid on Physical and Strength Properties of Recycled Pulp

2021 ◽  
Vol 72 (3) ◽  
pp. 299-307
Author(s):  
Naghmeh Amani ◽  
Ramin Vaysi ◽  
Abdollah Najafi ◽  
Seyed Eshagh Ebadi

This study aimed to scrutinize chemical treatment of Mazandaran Wood and Paper mill activated sludge with 3 % acetic acid for the manufacture of environmentally eco-friendly bio composite. In this study, the paper pulp required was obtained from the waste newsprint paper. The activated sludge was treated in a beaker for 3 min in 3 % acetic acid and then in a water bath at 75 and 100 °C for 45 and 90 min. After that, the treated activated sludge was mixed and refi ned with waste newsprint paper pulp at ratios of 0, 5, 10, 15 and 20 %. The test specimens were prepared according to TAPPI standard and the physical properties (water absorption and porosity) and mechanical (tensile strength, tear strength, ring crush test, burst strength and folding strength) were measured. The results showed that the activated sludge treatment caused the increase in tear strength, ring crush test, burst strength and porosity as well as the decrease in water absorption, tensile strength and folding strength. FT-IR spectrum of the treated samples showed that the treatment with acetic acid strengthened and activated the functional groups on the surface of activated sludge fi bers. The activated sludge added at a level of 5 % at 100 °C for 90 min as well as at a level of 20 % at 75 °C for 45 min was more suitable than other treatments.

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 4237-4251
Author(s):  
Naghmeh Amani Bishehgah ◽  
Ramin Vaysi ◽  
Majid Kiaei ◽  
Abdollah Najafi ◽  
Seyed Eshagh Ebadi

The present research aims to shed light on the effect of activated sludge (from a paper mill) and nanochitosan on the physical and strength properties of recycled pulp. Firstly, activated sludge was treated with 3% acetic acid for 30 min and then placed in a beaker for 90 min at 100 °C. Then, the ingredients were mixed and refined with recycled newsprint pulp in different proportions (0, 5, 10, and 15%). Finally, 2% nanochitosan was optionally added. Test specimens were prepared according to TAPPI standards with a basis weight of 120 g/m2, and their physical (water absorption) and strength (tear strength, tensile strength, burst strength, and ring crush test) properties were measured and compared. The results showed that with the increase of untreated activated sludge in recycled paper pulp, the indicators of tear resistance, ring crush test, and burst strength decreased and water absorption increased. Strength properties increased and water adsorption decreased when adding activated sludge treated with 3% acetic acid. Through the addition of nanochitosan to activated sludge treated with acetic acid, a significant increase in strength properties and a decrease in water absorption were observed.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 300
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

This paper presents the water absorption and strength properties of short carbon fiber reinforced mortar (CFRM) composite. Four CFRM composites with 1%, 2%, 3%, and 4% short pitch-based carbon fibers were produced in this study. Normal Portland cement mortar (NCPM) was also prepared for use as the control mortar. The freshly mixed mortar composites were tested for workability, wet density, and entrapped air content. In addition, the hardened mortar composites were examined for compressive strength, splitting tensile strength, flexural strength, and water absorption at the ages of 7 and 28 days. The effects of different carbon fiber contents on the tested properties were observed. Test results showed that the incorporation of carbon fibers decreased the workability and wet density, but increased the entrapped air content in mortar composite. Most interestingly, the compressive strength of CFRM composite increased up to 3% carbon fiber content and then it declined significantly for 4% fiber content, depending on the workability and compaction of the mortar. In contrast, the splitting tensile strength and flexural strength of the CFRM composite increased for all fiber contents due to the greater cracking resistance and improved bond strength of the carbon fibers in the mortar. The presence of short pitch-based carbon fibers significantly strengthened the mortar by bridging the microcracks, resisting the propagation of these minute cracks, and impeding the growth of macrocracks. Furthermore, the water absorption of CFRM composite decreased up to 3% carbon fiber content and then it increased substantially for 4% fiber content, depending on the entrapped air content of the mortar. The overall test results suggest that the mortar with 3% carbon fibers is the optimum CFRM composite based on the tested properties.


2020 ◽  
Vol 4 (3) ◽  
pp. 609-614
Author(s):  
K. J. Lawal ◽  
A. Oluyege ◽  
T. S. Bola ◽  
K. S. Aina ◽  
B. C. Falemara ◽  
...  

This study investigated the dimensional stability and strength properties of plastic bonded composites produced from wood waste particles and polyethylene using extruder. The composites were produced from wood species such as such as: Triplochiton scleroxylon, Terminalia superba and Gmelina arborea at a mixing proportion of 60:40 (plastic/wood) on a weight by weight basis. Evaluation of properties was carried out in accordance with the American Standard Testing Methods of 570 and 790 to determine the dimensional stability and strength properties of the composites. The results of findings revealed that water absorption and thickness swelling of the wood composites ranged from 10.08% to 15.36% and 4.33% to 5.58% respectively after 24hours and 48hours immersion in water. Tensile strength also ranged between 29.4MPa and 45.6MPa. Composite board made from T. superba wood particles had the lowest significant water absorption (10.08%), thickness swelling (4.33%) and highest significant tensile strength (45.6MPa) compared to composites produced from G. arborea and T. scleroxylon wood particles. It was observed that high density wood species exhibit lower water intake, lower thickness swelling and higher tensile strength, while the contrary is the case for lower density wood species. In conclusion, the three tree species used for the study could be recommended for the production of wood composite like particle board, fibre board, wood cement boards and others.


2019 ◽  
Vol 9 (23) ◽  
pp. 5010
Author(s):  
Arkadiusz Denisiewicz ◽  
Małgorzata Śliwa ◽  
Krzysztof Kula ◽  
Tomasz Socha

This paper presents the experimental tests of concrete made on the recycled aggregates basis. Tests were carried out to determine the concrete suitability for construction purposes. The physical and strength properties were determined for three types of recycling aggregates. The aggregates were obtained from sanitary ceramics ‘SC’ (washbasins and toilet bowls), building ceramics ‘BC’ (solid bricks), and concrete rubble ‘CR’. The results obtained in tests of compressive strength, bending tensile strength, water absorption, total shrinkage, watertightness, and frost resistance of concrete made of SC and CR aggregates gave grounds for stating its suitability for structural purposes. Concrete based on the BC aggregates is not recommended for structural applications.


2020 ◽  
Vol 4 (2) ◽  
pp. 36-42
Author(s):  
Na yad ◽  
Maribel L. ◽  
Is on ◽  
Michael Jomar B ◽  
Ma ningas ◽  
...  

The goal of this research is to create biodegradable plastics made from Paragis grass (Eleusine indica) cellulose-pulp that can be used as alternatives to traditional plastics. The bioplastics were made by combining cellulose pulp from paragis grass leaves, sorbitol, acetic acid, and corn starch, with a constant amount of 8g corn starch and varying amounts of cellulose pulp (20g, 30g, and 40g), as well as 10ml sorbitol and 3 ml acetic acid. Collection and processing of paragis grass, cellulose pulp manufacturing, and bioplastic film manufacture were some of the methods used. Tensile strength, biodegradability, water absorption, and water solubility tests are used to characterize bioplastic. The mechanical properties testing shown that bioplastic produced with variation of corn starch to paragis grass cellulose pulp ratio had a tensile strength of 0.549 MPa, 0.878 MPa and 1.03 MPa; elongation at break (%) of 7.33%, 6.97% and 6.54%; biodegradability (weight loss) of 91.65%; 90.05%; and 69.46%; water absorption (weight gain) of 91.80%, 83.06% and 53.74%; and water solubility (weight loss) of 86.96%, 66.46% and54.91% respectively. The study found that Treatment 3 (40g paragis grass) has higher tensile strength (1.03 MPa) and tear strength, ability to degrade in four weeks, low water absorption (53.74%), and water solubility (54.91%).The result showed that cellulose-pulp from Paragis grass leaves could be used to make bioplastic. This research would aid in the reduction of plastic waste that pollutes the Earth’s soil, air, and water, as well as the mitigation of its consequences. It can also help reduce environmental pollution by using biodegradable plastic.


2021 ◽  
Vol 11 (1) ◽  
pp. 6703-6707
Author(s):  
A. S. Buller ◽  
A .M. Buller ◽  
T. Ali ◽  
Z. A. Tunio ◽  
S. Shabbir ◽  
...  

This study experimentally investigates the mechanical and durability performance of bacteria concrete in terms of density, compressive strength, split tensile strength, and water absorption capacity. The concrete specimens were produced with a ratio of 1:2:4, w/c ratio of 0.45, and having a bacteria dosage level ranging from 1 to 6% by weight of water. To investigate the usefulness of the bacteria dosage level, cubic and cylindrical specimens were cast and tested after 28 days of water curing in a Universal Testing Machine with a constant loading rate. The density of each specimen was also recorded soon after casting and after the curing period ended. Moreover, the water absorption test was similarly conducted on cube specimens at various time intervals to record the penetration depth. The test results of normal concrete (without bacteria) were compared with the ones of the specimens containing bacteria. The optimum level of bacteria was found to be 3.5%, which showed the highest values in terms of compressive strength, split tensile strength, and density. Bacteria tend to generate more crystalline materials inside the concrete mass due to reactions with the surrounding moisture which produces a compact surface, thus strength properties were improved and water penetration was blocked which suggests better durability of the concrete.


BioResources ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. 3837-3846
Author(s):  
Seyed Ali Haji Mirza Tayeb ◽  
A. Jahan Latibari ◽  
A. Tajdini ◽  
S. M. J. Sepidehdam

The effect of laboratory refining on de-inking potential of inkjet printed handsheets was investigated. Pulp samples containing 80% short fiber and 20% long fiber were beaten in a PFI mill to reach four predetermined freeness levels of 650 (unrefined), 550, 430, and 340 mL CSF, and then handsheets were made. Handsheets were identically inkjet printed and then de-inked. Results revealed that, at lower freeness value, the brightness of de-inked pulps was higher, but the opacity decreased. The surface roughness of handsheets produced using different refined pulp before de-inking was reduced. Our results showed that refining will impart a positive effect on handsheets’ de-inking potential, and de-inking printed papers produced from pulps refined to lower freeness generated the highest brightness. The results revealed that both tensile and tear strength indices of de-inked pulp were lower. However, the tear strength index of unrefined sample and the tensile strength index of pulp refined to 430 ml CSF were higher than for undeinked samples.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mohammad L. Hassan ◽  
Shaimaa M. Fadel ◽  
Enas A. Hassan

Nanofibrillated cellulose (NFC) isolated from TEMPO-oxidized rice straw was used to improve thermal and tensile strength properties of acrylate polymer films. Acrylate/NFC mixture containing 15% NFC was used for paper coating, and properties of paper sheets including tensile strength, water absorption, and microscopic structure were investigated. The results showed that the presence of NFC in the acrylate matrix significantly improved tensile strength properties and thermomechanical properties of the acrylate polymer and caused moderate increase in its moisture sorption. The presence of NFC in acrylate emulsion caused significant increase in its viscosity. Paper sheets coated with different thin layers (from 0.2 to 6 microns) of acrylate/NFC showed improvement in tensile strength and decrease of water absorption.


2020 ◽  
Vol 8 (3) ◽  
pp. 329
Author(s):  
Liza Natasya Pongmassangka ◽  
Bambang Admadi Harsojuwono ◽  
Sri Mulyani

This study aims to determine the effect of temperature regulation and the appropriate drying time on the manufacture of bioplastic composites of maize and glucomannan mixtures, as well as providing information on science and technology in the field of bioplastics. This experimental design uses the complete random design method. The first factor is the drying temperature of bioplastic composites from a mixture of cornstarch and glucomannan which consists of 3 levels, namely 60 ± 1; 65 ± 1; 70 ± 1 ° C. Factor 2 is the drying time which consists of 3 levels, namely for 16, 17.5 and 19 hours. The variables observed were tensile strength, elongation at break, elasticity, swelling and biodegradation. Data were analyzed for diversity and continued with the Tukey test to find out the difference of design experiment. The results showed that temperature and drying time and their interactions had a very significant effect on tensile strength, elongation, elasticity, and water absorption. but the temperature treatment and interaction have no significant effect on the ability of biodegradation. The interaction between treatments has a very significant effect on elongation, elasticity and water absorption. and has a significant effect on tensile strength. The best biodegradable plastic characteristics were determined by tensile strength test at a temperature of 70 °C with 16 hours drying time which resulted in tensile strength values ??of 2,395MPa. Bioplastics produced in this study did not meet the criteria of mechanical tensile strength, elasticity and thickness development. Keywords: Bioplastics, glycerol, glucomannan and maizena.


2013 ◽  
Vol 795 ◽  
pp. 313-317 ◽  
Author(s):  
M. Sabri ◽  
A. Mukhtar ◽  
K. Shahril ◽  
A. Siti Rohana ◽  
Husseinsyah Salmah

Compatibilizer is used to improve mechanical properties and water absorption behaviour of polypropylene/coconut fiber (PP/CF) composites by promoting strong adhesion between CF filler and PP Matrix. Maleic Anhydride Grafted Polypropylene (MAPP) treated and untreated composites were prepared in formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical tensile test indicates that composite with 10 wt% has the optimum value of tensile strength, and the MAPP treated composite shows the tensile strength was increased. The modulus of elasticity was increased while the elongation at break was decreased by increasing of filler loading. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of MAPP reduced the equilibrium water absorption percentage.


Sign in / Sign up

Export Citation Format

Share Document