scholarly journals Experimental Characterization of Bacterial Concrete Against Mechanical and Durability Performance

2021 ◽  
Vol 11 (1) ◽  
pp. 6703-6707
Author(s):  
A. S. Buller ◽  
A .M. Buller ◽  
T. Ali ◽  
Z. A. Tunio ◽  
S. Shabbir ◽  
...  

This study experimentally investigates the mechanical and durability performance of bacteria concrete in terms of density, compressive strength, split tensile strength, and water absorption capacity. The concrete specimens were produced with a ratio of 1:2:4, w/c ratio of 0.45, and having a bacteria dosage level ranging from 1 to 6% by weight of water. To investigate the usefulness of the bacteria dosage level, cubic and cylindrical specimens were cast and tested after 28 days of water curing in a Universal Testing Machine with a constant loading rate. The density of each specimen was also recorded soon after casting and after the curing period ended. Moreover, the water absorption test was similarly conducted on cube specimens at various time intervals to record the penetration depth. The test results of normal concrete (without bacteria) were compared with the ones of the specimens containing bacteria. The optimum level of bacteria was found to be 3.5%, which showed the highest values in terms of compressive strength, split tensile strength, and density. Bacteria tend to generate more crystalline materials inside the concrete mass due to reactions with the surrounding moisture which produces a compact surface, thus strength properties were improved and water penetration was blocked which suggests better durability of the concrete.

2019 ◽  
Vol 9 (23) ◽  
pp. 5010
Author(s):  
Arkadiusz Denisiewicz ◽  
Małgorzata Śliwa ◽  
Krzysztof Kula ◽  
Tomasz Socha

This paper presents the experimental tests of concrete made on the recycled aggregates basis. Tests were carried out to determine the concrete suitability for construction purposes. The physical and strength properties were determined for three types of recycling aggregates. The aggregates were obtained from sanitary ceramics ‘SC’ (washbasins and toilet bowls), building ceramics ‘BC’ (solid bricks), and concrete rubble ‘CR’. The results obtained in tests of compressive strength, bending tensile strength, water absorption, total shrinkage, watertightness, and frost resistance of concrete made of SC and CR aggregates gave grounds for stating its suitability for structural purposes. Concrete based on the BC aggregates is not recommended for structural applications.


The study of strength behaviour of M20 grade concrete, by exchanging the cement partly by powder of egg shell, for which an experimental tests were carried out and the effect of egg shell powder (0%,5%.10%,15%) on compressive strength characteristics were studied. The result of this present investigation shows that the replacement of 5% of cement with egg shell powder attains the maximum compressive strength. The best and economical percentage exchange of replacement of powder of egg shell (ESP) with cement is about 5% and also reduces the cost of concrete with the use of powder of egg shell, which is available freely as raw material and then it is grinded well to make powder. The egg shell is available from municipal solid waste and is mixed in powder form in concrete by exchanging the cement and is found that 5% replacement is very effective in the improvement of strength properties when compared to the conventional concrete. Also the exchangement of 5% ESP in cement gives higher split tensile strength as compared to other cement ingredient mixtures. In this study, it is fixed that 0.45 is the w/c ratio and it produces medium degree of workability which is suitable for most of the concrete mixtures on site. The addition of eggshell powder as filler in concrete has improved the strength of concrete and also improved and better split tensile strength.


2020 ◽  
Vol 8 (6) ◽  
pp. 263-269
Author(s):  
Jigyasa Shukla ◽  
Harsh Gupta

This paper present the study of various strength such as compressive strength, split tensile strength and flexural strength during 7 and 28 day. It is construct the specimens size 15cm X 15cm X 15cm for testing purpose which depend upon the size of aggregate. Test results are indicated that strength performance of concrete well as in durability aspect are improved using of Silica fume


Portland cement is a kind of cement used where the high strength and durability is needed. Also, this type of cement is essentially used to control the CO2 emission during the manufacturing process of the concrete. This cement is made up of slag with the activator such as alkalis in the form of sodium hydroxide or sodium silicate. However, this addition is increasing the overall cost of the production of concrete. In this research, a new attempt has been made to use the natural activators of Rice Husk Ash (RHA) and Natural Steatite Powder (NSP). This research aims to determine the effects of RHA and NSP with Portland slag cement by partial replacement with 5%, 10%, 15% and 20% of RHA and NSP. The influence of the RHA and NSP on the mechanical properties of the mortar was evaluated by measuring the compressive strength and the split tensile strength. The durability properties of the specimens were analyzed by water absorption, sorpitivity and acid attack tests. The analysis of the microstructure of the specimens was done by scanning electron microscope (SEM) and Fourier Transform Infrared Spectra analysis (FTIR). It was observed that the maximum compressive strength and split tensile strength was in 5% RHA and NSP blended mortar. The durability results showed that the 10% RHA and 10% NSP had lesser water absorption and sorpitivity values. From the results of micro structural analysis it was observed that replacing cement with 5% RHA and 5% NSP results in improvement of microstructure of cement mortar.


2020 ◽  
Vol 44 (5) ◽  
pp. 353-358
Author(s):  
Bode Venkata Kavyateja ◽  
Panga Narasimha Reddy

Industrial wastes generally pumped into water bodies and soil that would pollute the atmosphere. As a control measure, industrial wastes products utilized as waste building materials. In the present research, waste products from various industries like illuminate sludge and glass bottle powder used in different dosages as a replacement for fine aggregate and metakaolin used as a cement replacement. Split tensile strength and compressive strength of the concrete samples examined for M30 grade. Fine aggregate is substituted by glass bottle powder (i.e. 10 to 40%) and illuminate sludge (i.e. 10 to 30%). Metakaolin substituted for cement replacement (i.e. 4 to 12%). Glass bottle does not pollute the atmosphere, but the disposal of waste glass results wastage of land. Thereby glass bottle powder can be utilized as a cement replacement in the construction industry. Then the metakaolin and illuminate sludge are the waste products from the titanium product. The experiment performed to assess the strength properties by incorporating various industrial wastes in different dosages. Physical tests of all three products have carried out according to the code requirements. Three specimens have been tested for each industrial waste products ratio to examine the tensile and compressive strength of concrete at 7th day, 14th day and 28th day and eventually to cure to achieve the optimum strength of concrete. Addition of these industrial wastes into the concrete showed an outstanding improvement in modulus of rupture, split tensile strength and compressive strength at an early and later ages.


Author(s):  
Mantu Kumar

Abstract: Among all the current construction materials, concrete occupies a unique position. Concrete is the most often utilised building material. Cement production emits CO2, which is harmful to the environment. One of the most crucial ingredients in concrete production is cement. Experiments were carried out to see how different percentages of Fly Ash and GGBS affected the mechanical qualities of M60 grade concrete. After 7, 14, and 28 days of curing, the compressive strength of concrete cubes with suggested replacement was determined. Compressive strength, split tensile strength, and flexural strength are all evaluated on the cubes, cylinders, and prisms. The primary goal of this study is to compare the fresh and hardened characteristics of M-60 grade control concrete with concrete prepared with varied ratios of fly ash and GGBS Keywords: GGBS, Fly Ash, Durability, Compressive Strength, Tensile Strength, Flexural Strength, Slum cone Test


Author(s):  
Ravande Kishore ◽  
Archana Penchala

The Paper describes the comprehensive experimental work carried out on M40 grade bacterial concrete containing fly ash. Two types of common soil bacteria namely, Bacillus Pasteruii and Bacillus Odysseyi with a concentration of 105 cells/ml have been used. The optimum cell concentration of bacteria was arrived at by studying its influence on compressive strength of cement mortar matrix. Fly ash of 10 % by weight of cement was used to partially replace OPC in the concrete mixture. The performance of M40 bacterial concrete containing fly ash was assessed by testing the standard specimen for compressive strength, flexural strength and split tensile strength at different ages of curing. Results of investigation indicate significant improvement in 28 days compressive strength in the range of 12% to 27%. Twenty eight days flexural strength and split tensile strength have also shown appreciable increase in the range of 4% to 14% and 11% to 24% respectively. In general, the results of investigation are encouraging and set in positive direction for use of Bacterial concrete in the construction sector during 21st century.


2019 ◽  
Vol 8 (2) ◽  
pp. 1946-1950

The goal for taking p this exploration is because of the at that now a days the natural sand affirming to Indian standards is becoming scarcer and costlier because of nonaccessibility in time for the reason that law of land, unlawful digging by sand mafia etc… For this reason a motivation has been done to identify a new source of aggregates. The objective of this study is to verify the appropriateness, feasibility &forthcoming utilization of Stone powder for future years. Stone powder is a loss from the quarry preparing units. It accounts 30% of the residue from the quarry industry. Use of stone powder as a replacement of Natural sand reduces cost of construction but also it helps to reduce the wastage of material so it can be give a good impact to the environment. Hence in the current study an attempt has been made on concrete mix of grade M40 by experimenting the strength properties & durability of concrete by replacing Stone powder by 25%, 50%, 75% & 100% to Natural sand and expand the project the addition of steel fibers of 0.5%,0.75% and 1% have done and also the effect of curing of 3% of H2SO4 , HCI and Sea water on these concrete mixes are determined by immersing these cubes for 28 days, 90 days in above solutions and respective changes in compressive strength, tensile strength & weight reduction observed and it has been found that the compressive, split tensile strength of concrete made of stone powder increases nearly 17% and 60% with addition of steel fibers. The durability studies show a decrease of nearly 17% in compressive strength


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 300
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

This paper presents the water absorption and strength properties of short carbon fiber reinforced mortar (CFRM) composite. Four CFRM composites with 1%, 2%, 3%, and 4% short pitch-based carbon fibers were produced in this study. Normal Portland cement mortar (NCPM) was also prepared for use as the control mortar. The freshly mixed mortar composites were tested for workability, wet density, and entrapped air content. In addition, the hardened mortar composites were examined for compressive strength, splitting tensile strength, flexural strength, and water absorption at the ages of 7 and 28 days. The effects of different carbon fiber contents on the tested properties were observed. Test results showed that the incorporation of carbon fibers decreased the workability and wet density, but increased the entrapped air content in mortar composite. Most interestingly, the compressive strength of CFRM composite increased up to 3% carbon fiber content and then it declined significantly for 4% fiber content, depending on the workability and compaction of the mortar. In contrast, the splitting tensile strength and flexural strength of the CFRM composite increased for all fiber contents due to the greater cracking resistance and improved bond strength of the carbon fibers in the mortar. The presence of short pitch-based carbon fibers significantly strengthened the mortar by bridging the microcracks, resisting the propagation of these minute cracks, and impeding the growth of macrocracks. Furthermore, the water absorption of CFRM composite decreased up to 3% carbon fiber content and then it increased substantially for 4% fiber content, depending on the entrapped air content of the mortar. The overall test results suggest that the mortar with 3% carbon fibers is the optimum CFRM composite based on the tested properties.


2008 ◽  
Vol 1 (2) ◽  
pp. 113-120 ◽  
Author(s):  
A. C. Marques ◽  
J. L. Akasaki ◽  
A. P. M. Trigo ◽  
M. L. Marques

In this work it was evaluated the influence tire rubber addition in mortars in order to replace part of the sand (12% by volume). It was also intended to verify if the tire rubber treatment with NaOH saturated aqueous solution causes interference on the mechanical properties of the mixture. Compressive strength, splitting tensile strength, water absorption, modulus of elasticity, and flow test were made in specimens of 5cmx10cm and the tests were carried out to 7, 28, 56, 90, and 180 days. The results show reduction on mechanical properties values after addition of tire rubber and decrease of the workability. It was also observed that the tire rubber treatment does not cause any alteration on the results compared to the rubber without treatment.


Sign in / Sign up

Export Citation Format

Share Document