Uncertainty in expert knowledge of forest succession: A case study from boreal Ontario

2008 ◽  
Vol 84 (2) ◽  
pp. 194-209 ◽  
Author(s):  
M. Drescher ◽  
A H Perera ◽  
L J Buse ◽  
K. Ride ◽  
S. Vasiliauskas

Expert knowledge of forest succession is used widely in forest management planning, but its level of uncertainty is unknown. Using boreal Ontario as an example, we examined the level of uncertainty in expert knowledge of forest succession and explored possible sources of this uncertainty. Overall, the level of uncertainty associated with expert knowledge was high for all aspects of forest succession, except for post-fire species establishment. Higher levels of uncertainty were associated with knowledge of forest succession for mixed forest types and moderate site conditions, as opposed to coniferous or non-coniferous forest types and extreme dry/wet or poor/rich sites. We hypothesize that uncertainty in expert knowledge is highest when vegetation dynamics are highly stochastic as with complex species assemblages, environmental controls on succession are weak, and effects of disturbances are less drastic. Awareness about the degree of uncertainty in expert knowledge of forest succession could be incorporated into forest management decision processes. It could also help researchers to identify critical knowledge gaps to guide further studies. Key words: uncertainty assessment, post-fire establishment, natural succession, knowledge elicitation

1994 ◽  
Vol 72 (8) ◽  
pp. 1416-1419 ◽  
Author(s):  
Howard J. Kilpatrick ◽  
Paul W. Rego

We monitored 20 adult fishers (8 males, 12 females) to investigate the effects of season, sex, and site availability on rest-site selection by fishers at the southern extent of their range. Data on rest-site locations (n = 219) and random sites (n = 194) were collected from December 1989 through February 1991. Fishers rested in hardwood, softwood, and mixedwood forest types in proportion to their availability in summer; however, hardwoods were used less than expected in winter. Fishers used nests, cavities, and burrows in proportion to their availability in winter. In summer, however, nests were selected twice as often as expected, cavities were used less than expected, and burrows were not used. Male fishers tended to use larger cavity trees and mixed forest stands more often than females did. In winter, fishers were not restricted to coniferous forest types, as occurs at the northern extent of their range, because moderate snow depths did not restrict movement and prey may have been more available in other forest types. Fishers appeared to select rest-site types most suitable for thermoregulation and obtaining prey. Trees with diameter at breast height ≥ 32 cm may provide cavities for rest sites in hardwood-dominated forests.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yufeng Chi ◽  
Shudi Zuo ◽  
Yin Ren ◽  
Kaichao Chen

The spatiotemporal distribution pattern of the aerosol optical depth (AOD) is influenced by many environmental factors, such as meteorological condition changes, atmospheric pollution, and topographic changes. Understanding the relationship between the vegetation land cover and the AOD would favor the improvement of forest ecosystem services. This quantitative research integrated remote sensing and ground survey data and used spatial statistical methods to explore the drivers that influence the AOD of the exurban national forest park and analyze the differences between various forest types. The driver analysis was carried out in the hot (Z ≥ 1.64) and cold (Z ≤ −1.64) spots of AOD in 2010 and 2017. Our results showed that (1) the forest type was proved to be the main factor contributing to the AOD pattern and (2) from 2010 to 2017, the average growth rate of broad-leaved forest, coniferous forest, bamboo, and shrub in hot spots was significantly higher than that in cold spots, while there was no significant difference in the mixed forest. The average growth rate of biomass densities of bamboo, coniferous forest, and mixed forest were higher than that of the shrub and broad-leaved forest. These findings provided the guidance for the rational allocation of tree species to increase the biomass and improve the ecosystem service values of forest parks.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 806
Author(s):  
Xiaoni Wu ◽  
Changqun Duan ◽  
Denggao Fu ◽  
Peiyuan Peng ◽  
Luoqi Zhao ◽  
...  

Understanding the influence of invasive species on community composition and ecosystem properties is necessary to maintain ecosystem functions. However, little is known about how understory plant communities and soil nutrients respond to invasion under different land cover types. Here, we investigated the effects of the invasive species Ageratina adenophora on the species and functional diversity of understory communities and on soil phosphorus (P) status in three forest types: CF, coniferous forest; MF, coniferous and broadleaf mixed forest; and EBF, evergreen broadleaf forest. We found that the species and functional diversity indices of the understory community significantly varied by forest type. Among the invaded plots, the greatest decrease in functional diversity (functional richness, functional divergence, and functional dispersion) and biotic homogenization were found in the CF rather than the MF or EBF. In addition, the invasion by A. adenophora significantly increased the soil NaHCO3-extractable inorganic P and organic P in the MF and EBF, respectively, while obviously decreasing the soil maximum P sorption capacity and maximum buffering capacity in the CF. However, the changes in the species and functional attributes of the understory communities were weakly associated with changes in the soil P status, probably because of the different response times to invasion in different forest types. The implication of these changes for ecosystem structure and function must be separately considered when predicting and managing invasion at a landscape scale.


Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 45 ◽  
Author(s):  
Chao Li ◽  
Mingyang Li ◽  
Jie Liu ◽  
Yingchang Li ◽  
Qianshi Dai

To effectively further research the regional carbon sink, it is important to estimate forest aboveground biomass (AGB). Based on optical images, the AGB can be estimated and mapped on a regional scale. The Landsat 8 Operational Land Imager (OLI) has, therefore, been widely used for regional scale AGB estimation; however, most studies have been based solely on peak season images without performance comparison of other seasons; this may ultimately affect the accuracy of AGB estimation. To explore the effects of utilizing various seasonal images for AGB estimation, we analyzed seasonal images collected using Landsat 8 OLI for a subtropical forest in northern Hunan, China. We then performed stepwise regression to estimate AGB of different forest types (coniferous forest, broadleaf forest, mixed forest and total vegetation). The model performances using seasonal images of different forest types were then compared. The results showed that textural information played an important role in AGB estimation of each forest type. Stratification based on forest types resulted in better AGB estimation model performances than those of total vegetation. The most accurate AGB estimations were achieved using the autumn (October) image, and the least accurate AGB estimations were achieved using the peak season (August) image. In addition, the uncertainties associated with the peak season image were largest in terms of AGB values < 25 Mg/ha and >75 Mg/ha, and the quality of the AGB map depicting the peak season was poorer than the maps depicting other seasons. This study suggests that the acquisition time of forest images can affect AGB estimations in subtropical forest. Therefore, future research should consider and incorporate seasonal time-series images to improve AGB estimation.


2017 ◽  
Vol 7 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Данилов ◽  
Dmitriy Danilov ◽  
Беляева ◽  
Nataliia Beliaeva ◽  
Мартынов ◽  
...  

The influence of composition on the dynamics of inventory indices of the mixed modal forest stands is considered: ridges with the groups of forest types of middle subzone of taiga in the territory of the Leningrad region, for 60 year period. The course of growth of pine and spruce in the mixed stand is due to the composition of the stand, which affects the entire life cycle of its development. Analysis of forest inventory data at the test plots has shown that the median line for the average height and diameter has the distinction of growth from tabular reference data. Differences in the dynamics of growth in valuation metrics over the study period is due to the initial density of pine, then spruce, and the degree of difference in the age of trees. The variability of average heights and diameters on the experimental plots is influenced by the share of particular species in the composition of the stand. The stand composition significantly affects average diameter and height of tiers, composing the mixed coniferous forest that was confirmed by single-factor analysis of variance. The sum of the areas of the cross sections at the pine tier of the virtually at all experienced objects increases up to the age of 100-120 years, and in spruce this dependence is shown only up to the age of 80-85 years. Pine tier depending on the initial density has a greater impact on the composition of the mixed stands than spruce. This can be considered as a fact of environmental compliance of the conditions of the types: ridges with groups of forest types, for successful growth of pine. In mixed stands, untouched by commercial logging, the spruce element, quantitatively not exceeding the pine one, are stunted and produce less stock


2017 ◽  
Vol 26 (2) ◽  
pp. eRC01S
Author(s):  
Míriam Piqué ◽  
Pau Vericat ◽  
Mario Beltrán

Aim of the study: To develop regional guidelines for sustainable forest management.Area of the study: Forests of Catalonia (NE Spain).Material and methods: The process of developing the forest management guidelines (FMG) started by establishing a thorough classification of forest types at stand level. This classification hinges on two attributes: tree species composition and site quality based on ecological variables, which together determine potential productivity. From there, the management guidelines establish certain objectives and silvicultural models for each forest type. The forest type classifications, like the silvicultural models, were produced using both existing and newly-built growth models based on data from the National Forest Inventory (NFI) and expert knowledge. The effort involved over 20 expert working groups in order to better integrate the expertise and vision of different sectorial agents.Main results: The FMG consist in quantitative silvicultural models that include typical silvicultural variables, technical descriptions of treatments and codes of good practice. Guidelines now cover almost all forest types in Catalonia (spanning up to 90% of the Catalan forest area). Different silvicultural models have been developed for pure and mixed stands, different site quality classes (2–3 classes per species), and even- and multi-aged stands.Research highlights: FMG: i) orient the management of private and public forests, (ii) provide a technical scaffold for efficient allocation/investment of public subsidies in forest management, and (iii) bridge forest planning instruments at regional (strategic-tactical) and stand (operational) level.


2020 ◽  
Vol 14 (4) ◽  
pp. 565-570
Author(s):  
Zeng Zhangquan ◽  
Tang Hong ◽  
Li Minghong ◽  
Wang Silong ◽  
Zhang Canming ◽  
...  

To better understand the effect of forest succession on carbon storage of woody debris (WD), carbon stock and allocation of evergreen broadleaf forest, a major zonal forest in subtropical China was investigated. Three forest types were sampled, pine (Pinus massoniana) forest (PF), pine and broadleaf mixed forest (MF) and evergreen broadleaf forest (BF). The amount of woody debris (WD) biomass was between 1.26–8.82 Mg · hm–2, under the following order: PF < MF < BF, showed a trend of increase gradually with the succession. Coarse woody debris (CWD) carbon content varies with tree species and its decomposition level, with the improvement of CWD decomposition level, gradually reduce its carbon content. The woody debris carbon storage of PF, MF, and BF were 0.62 Mg · hm–2, 1.75 Mg · hm–2 and 3.78 Mg · hm–2, respectively, corresponded to the tree carbon storage 0.73%, 1.83% and 2.92%.


2002 ◽  
pp. 32-43
Author(s):  
V. I. Vlasenko ◽  
M. G. Erunova ◽  
I. S. Scerbinina

The reserve “Stolby” is characteristic key plot of the mountain-taiga and subtaiga-forest steppe altitudinal belts in the East Sayan Mountains, where anthropogenic influence is the least pronounced. It was founded in 1925, in 15 km southward of Krasnoyarsk city, on north-west spurs of the Western Sayan Mountains which adjoin closely to right bank of the Yenisei River bordering upon the Middle Siberian Plateau. Reserve's physiography is characterized by low mountain and middle mountain erosion-accumulation relief with absolute heights of 200-800 m. Low mountain part (200-500 m) is composed of loose sedimentary rocks. In the middle mountain part of the reserve (500-800 m) there are outcrops of sienite rocks of various stages of destruction. Vegetation and soils of the reserve change in agreement with absolute heights and climate. In low mountains spread the subtaiga and forest-steppe leaved-light needle forests on mountain grey forest soils (8.1 % of reserve territory); the middle mountain part is occupied by the light needle and dark needle taiga forests on mountain podzol soils (91.9 % of the area). As the basement for vegetation map we took the map of forest environments of reserve by T. N. Butorina compiled according to materials of land forest management of 1977 year. As the result of forest management near 2000 biogeocoenoses were distinguished. The type of biogeocoenosis, according to V. N. Sukachev, is selected as mapping unit. Biogeocoenoses were united into 70 groups of forest types, representing 21 series of associations which are reflected in the map legend (Fig. 1). The main goal of map is to show the territorial distribution of groups and series of types of biogeocoenoses in the main structural units - altitudinal be't complexes (ВПК) which are equivalents of altitudinal vegetation belts. For designation of forest tree species various kinds of hatches were used. Formations of Siberian pine, larch, pine, fir, spruce, birch and aspen forests are shown on the map. Within the ВПК arabic numerals show the groups of types of biogeocoenoses (forest types), united into series according to similarity of dominants in ground layer. The mountain-taiga ВПК includes the following series and groups of types of biogeocoenoses: dwarf-shrub-moss (1-4); sedge-moss (5-9); bilberry-low herb-moss (10-14); tall herb-sedge (15-19); tall herb-wood sour-moss (20-26); tall herb-small reed (27-32). The subtaiga-forest steppe ВГ1К embraces: shrub steppificated (33-34); shrub-forb steppificated (35-38): sedge- bilberry (39-40); sedge-forb (41-43); bracken (44); small reed-forb (45); bilberrv-forb- sedge (46, 47); forb-tall herb (48-51); tall herb (52-55); wet tall herb-small reed (56-59); fern-tall herb (60). Intrazonal phytocoenoses: brook tall herb (61-63); brook shrub (64-68); lichen-moss (69); cowberry (70). In 1999-2000 on the base of topographic map in a scale 1 : 25 000, map of forest environments, transformed by us into vegetation map of the reserve, M. J . Erunova and I. S. Scerbinina worked out an electronic variant. For this project the instrumental facilities of GIS, GeoDraw and GeoGraph (CGI IG RAS, Moscow) and programs of Geophyt were used.


2017 ◽  
Vol 168 (2) ◽  
pp. 59-66
Author(s):  
Pierre Mollet ◽  
René Hardegger ◽  
Res Altwegg ◽  
Pius Korner ◽  
Simon Birrer

Breeding bird fauna in a coniferous forest in the northern Prealps after storm Lothar In a 70-hectare large coniferous forest located on the northern edge of the Alps in central Switzerland, Canton of Obwalden, at an altitude of 1260 to 1550 metres above sea level, we surveyed the local breeding bird fauna in 2002 and 2013 by means of point counts as well as additional area searches for rare species. In December 1999, hurricane Lothar caused two large windthrow areas and several smaller areas with scattered throws in the survey range. We found a total of 48 breeding bird species, which is a very diverse species composition for a mountain forest. In the eleven years between surveys, a decline in distribution or abundance was recorded for four species, while seven species showed an increase; a further four species showed no change. For the remaining species, the data sets were too small to reliably estimate changes. A comparison with forest structure data provided by the Swiss Federal Institute of Forest, Snow and Landscape Research WSL revealed that for five bird species, the changes in distribution or abundance could be explained at least partially by forest succession. In order to obtain realistic distribution and abundance values in this kind of breeding bird survey, it is essential to collect large enough samples and to consider the detection probability of each individual species using appropriate statistical methods.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 394
Author(s):  
Xinhui Xu ◽  
Zhenkai Sun ◽  
Zezhou Hao ◽  
Qi Bian ◽  
Kaiyue Wei ◽  
...  

Forests can affect soil organic carbon (SOC) quality and distribution through forest types and traits. However, much less is known about the influence of urban forests on SOC, especially in the effects of different forest types, such as coniferous and broadleaved forests. Our objectives were to assess the effects of urban forest types on the variability of SOC content (SOC concentration (SOCC) and SOC density (SOCD)) and determine the key forest traits influencing SOC. Data from 168 urban forest plots of coniferous or broadleaved forests located in the Beijing urban area were used to predict the effects of forest types and traits on SOC in three different soil layers, 0–10 cm, 10–20 cm, and 20–30 cm. The analysis of variance and multiple comparisons were used to test the differences in SOC between forest types or layers. Partial least squares regression (PLSR) was used to explain the influence of forest traits on SOC and select the significant predictors. Our results showed that in urban forests, the SOCC and SOCD values of the coniferous forest group were both significantly higher than those of the broadleaved group. The SOCC of the surface soil was significantly higher than those of the following two deep layers. In PLSR models, 42.07% of the SOCC variance and 35.83% of the SOCD variance were explained by forest traits. Diameter at breast height was selected as the best predictor variable by comparing variable importance in projection (VIP) scores in the models. The results suggest that forest types and traits could be used as an optional approach to assess the organic carbon stock in urban forest soils. This study found substantial effects of urban forest types and traits on soil organic carbon sequestration, which provides important data support for urban forest planning and management.


Sign in / Sign up

Export Citation Format

Share Document