scholarly journals GC-MS analysis and antibacterial activity of some fractions from Lagochilus ilicifolius Bge. grown in Mongolia

2016 ◽  
Vol 16 ◽  
pp. 39-43
Author(s):  
M. Dumaa ◽  
Ya. Gerelt-Od ◽  
S. Javzan ◽  
D. Otgonhkishig ◽  
Ts. Doncheva ◽  
...  

3-methyl-1,2,3,4-tetrahydroquinoline (1), 4-hydroxyisoquinoline (2), 4-(1E)-hydroxy-1-prophenyl)-2-methoxyphenol (3), 4-acetoxycinnamic acid (4), Songoramine (5), and Songorine (6) have been determined by GC-MS analysis from the crude alkaloid mixtures (G1) obtained from the aerial parts of Lagochilus ilicifolius Bge. grown in Mongolia and comparison of the measured data with those from the literature. The compounds 1-6 are described for the first time from L.ilicifolius. From these 3-methyl-1,2,3,4-tetrahydroquinoline (1) was determined for the first time from natural plants.In addition, the antibacterial activity of fractions and total alkaloids were evaluated against Staphylococcus aurous, Bacillus subtilis, Bacillus cereus and Escherichia coli strains, respectively. The growth inhibition zones against gram-positive S.aureus, B.subtilis, B.cereus and gram negative E.coli, strains were observed. Positive results were achieved on 500 μg/disc concentration, but lower results or no active on 100 μg/disc concentration were for the plant extracts, fractions and total alkaloids.Mongolian Journal of Chemistry 16 (42), 2015, 39-43

2018 ◽  
Vol 13 (4) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Ngonye Keroletswe ◽  
Runner R. T. Majinda ◽  
Ishmael B. Masesane

One new 3-prenyl-2-flavene, named baphiflavene A, 1, and eleven known compounds, 2-12, were isolated and reported for the first time from Baphia massaiensis using several chromatographic techniques. Their structures were elucidated using different spectroscopic techniques; 1D and 2D-NMR, HRMS, GC-MS, UV/Vis, FTIR and by comparison with literature data. The isolates were tested against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Candida albicans to establish their preliminary antimicrobial activities. The results revealed that compound 1 had moderate activities against both Gram positive ( B. subtilis and S. aureus) and Gram negative ( E. coli and P. aeruginosa) bacteria, and good activity against C. albicans with inhibition zones of 10–23 mm (compared to 19 mm for chloramphenicol and miconazole standards). To the best of our knowledge, this is the first phytochemical work reported on Baphia massaiensis.


2013 ◽  
Vol 8 (11) ◽  
pp. 1934578X1300801 ◽  
Author(s):  
Carla Melim ◽  
Karoliny Guimarães ◽  
Zhelmy Martin-Quintal ◽  
Aurea Damaceno Alves ◽  
Domingos Tabajara de Oliveira Martins ◽  
...  

As part of the program of our research group to search for new and effective substances from the Brazilian biodiversity, the present work evaluates the antibacterial activity of four species from the Brazilian flora ( Garcinia achachairu, Macrosiphonia velame, Rubus niveus and Pilea microphylla) against Bacillus subtilis, Staphylococcus aureus and S. saprophyticus (Gram-positive bacteria), Escherichia coli (Gram-negative bacterium) and Candida albicans (yeast). The extracts of R. niveus and M. velame showed promising antibacterial activity with MICs, ranging from 1000 to 125 μg/mL. Bio-guided fractionation of M. velame yielded four compounds, with the highest inhibition being observed for compound 3, with a MIC of 125 μg/mL against S. aureus. The combinations of fractions 2 and 4 showed beneficial effect against Gram-positive bacteria (additive effect), suggesting a possible synergistic effect.


2011 ◽  
Vol 6 (10) ◽  
pp. 1934578X1100601 ◽  
Author(s):  
Mansouria Souria Bendeddouche ◽  
Hachemi Benhassaini ◽  
Zouaoui Hazem ◽  
Abderrahmane Romane

The volatile compounds obtained by hydrodistillation of the aerial parts of Rosmarinus tournefortii De Noé. growing wild in the occidental region of Algeria were analyzed by GC/MS. Thirty-six compounds were characterized representing 95.6% of the essential oil, with camphor (37.6%), 1,8-cineole (10.0%), p-cymene-7-ol (7.8%), and borneol (5.4%) as the major components. The antimicrobial activity was evaluated against three pathogenic bacteria: Gram-negative ( Escherichia coli and Pseudomonas aeruginosa) and Gram-positive ( Staphylococcus aureus). The minimum inhibitory concentration (MIC; mg/mL) was determined by sub-culture on Muller Hinton agar plates. The essential oil exhibited strong antibacterial activity against E. coli and P. aeruginosa, and was also active against Staphylococcus aureus.


2020 ◽  
Vol 17 ◽  
Author(s):  
Igor K. Yakuschenko ◽  
Nataliya N. Pozdeeva ◽  
Viktoriya A. Mumyatova ◽  
Alexey A. Terentiev ◽  
Svyatoslav Ya. Gadomsky

: Iso-octenidine, an isomer of octenidine dihydrochloride, was synthesized and studied for the first time. Isooctenidine was demonstrated to be 3-fold more soluble in water in comparison to original octenidine, and both substances had remarkably similar antibacterial activity (tested on Escherichia Coli and Micrococcus luteus).


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


Author(s):  
El Hanbali F Barrero A.F

Abstract- The essential oil composition from the aerial parts of Ormenis africana (Asteraceae), an endemic species from Morocco, has been investigated by GC/MS. A total of 31 compounds were identified, representing 77%. After fractionation by column chromatography, the main compound was isolated and its structure elucidated by NMR spectroscopy. The essential oil was dominated by oxygenated compounds with spathulenol (45.8%) followed by camphor (7.1%), -cadinol (5.9%) and -bisabolol (5.9%) as the main compounds. This oil can be classified as spathulenol-type according to its spathulenol content. In vitro the antibacterial activity of the whole essential oil against three Gram positive (Bacillus cereus, Enterococcus faecalis, Streptococcus C) bacteria and three Gram negative (Proteus vulgaris, Escherichia coli, Pseudomonas aeroginosa) bacteria, showed significant results. Keywords: Asteraceae, Ormenis africana, Essential oil, Spathulenol, Antibacterial activity.


Author(s):  
Gouse Basha Sheik ◽  
Muazzam Sheriff Maqbul ◽  
Gokul Shankar S. ◽  
Ranjith M S

Objective: To isolate and characterize novel actinomycetes and to evaluate their antibacterial activity against drug-resistant pathogenic bacteriaMethods: In the present study, 19 soil samples were collected from different localities of Ad-Dawadmi, Saudi Arabia. Actinomycetes were isolated from these samples using serial dilution and plating method on Actinomycetes isolation agar supplemented with nalidixic acid and actidione to inhibit bacteria and fungi. Crude extracts of potential actinomycetes were produced by submerged fermentation. The antimicrobial activity of crude extracts of actinomycetes was tested against different bacteria using the agar well diffusion method. Characterization of the isolates was done by morphological, physiological and biochemical methods.Results: A total of 9 (47%) isolates of actinomycetes were isolated from 19 different soil samples tested. Among them, 4 (44%) isolates confirmed as Streptomyces sp. showed potential antimicrobial activity against one or more test organisms. Crude extracts were made from these 4 actinomycetes isolates(DOM1, DOM3, DP3, DP4)and tested for their antibacterial activities against 4 different clinical bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus). Crude extract from DP3 isolate showed highest antibacterial activity against all the four test organisms (28 mm, 21 mm, 20 mm and 18 mm) respectively and DP4 showed lowest antibacterial activity against all the four test organisms (14 mm, 12 mm, 0 mm, 6 mm) respectively. The highest zone of inhibition was shown by DP3 against Staphylococcus aureus (28 mm) and Escherichia coli was resistant for DP4. Most of the Inhibition zones produced by crude extracts showed significant differences when compared with control, tested against test organisms (P<0.05). Inhibition zones produced by DP3 and DOM1 against Staphylococcus aureus were 28 mm and 23 mm, respectively which were strong active when compared with control Ciprofloxacin (18 mm).Conclusion: Further studies for purification of bioactive metabolites and molecular characterization analysis of isolated Streptomyces sp. are in progress which would be helpful in discovering novel compounds of commercial value.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-9
Author(s):  
Antonio Carlos Pereira de Menezes Filho ◽  
Matheus Vinícius Abadia Ventura ◽  
Carlos Frederico de Souza Castro

Tibouchina granulosa is a species that blooms annually in several regions of Brazil. This species is still little explored in terms of phytocompounds in all organs of this plant, especially the floral organ. Flowers of T. granulosa were collected in the municipality of Rio Verde, Goiás, Brazil, in 2021. The hydroethanolic floral extract was prepared by maceration and qualitative phytochemical (colorimetric reactions and salt formation) and antibacterial analyzes performed and the results expressed in millimeters of inhibition at different concentrations in mg mL-1. Several phytochemical classes were observed with positive results, especially for alkaloids, phenolics, oxylates, saponins, carbohydrates and tannins. As for the bacterial assay, potential antibacterial activity was observed for all bacterial strains tested, except for Salmonella serovar Thyphymurium and serovar Enteritidis. Expressive inhibitions were observed for Enterococcus faecalis > Pseudomonas aeruginosa > Staphylococcus aureus and Escherichia coli at the highest concentrations between 100-50 mg mL-1. The floral extract of Tibouchina granulosa showed phytotherapeutic potential with the presence of several phytochemical groups and expressive antibacterial activity.


Author(s):  
Huu Dang ◽  
Derek Fawcett ◽  
Gerrard Eddy Jai Poinern

Background: This study for the first time presents an eco-friendly and room temperature procedure for biologically synthesizing silver (Ag) nanoparticles from waste banana plant stems.Methods: A simple and straightforward green chemistry based technique used waste banana plant stems to act as both reducing agent and capping agent to produce Ag nanoparticles, which were subsequently characterized. In addition, antibacterial studies were conducted using the Kirby-Bauer sensitivity method.Results: Advanced characterisation revealed the Ag nanoparticles had a variety of shapes including cubes, truncated triangular and hexagonal plates, and ranged in size from 70 nm up to 600 nm. The gram-negative bacteria Escherichia coli showed the maximum inhibition zone of 12 mm.Conclusions: The study has shown that waste banana plant stems can generate Ag nanoparticles with antibacterial activity against Escherichia coli and Staphylococcus epidermis.


Sign in / Sign up

Export Citation Format

Share Document