scholarly journals The effect of interspecies interactions and water deficit on spring barley and red clover biomass accumulation at successive growth stages

2016 ◽  
Vol 69 (4) ◽  
Author(s):  
Magdalena Jastrzębska ◽  
Marta K. Kostrzewska ◽  
Maria Wanic ◽  
Kinga Treder ◽  
Przemysław Makowski

<p>A pot experiment was conducted in a greenhouse in Olsztyn, Poland, in the period 2010–2012. The aim of the study was to examine whether soil water deficit would change biomass volume and distribution of pure sown spring barley and red clover as well as growth rate during their joint vegetation and mutual interactions. The interactions between spring barley and red clover were of a competitive character, and the cereal was the stronger crop. The strength of this competition increased in time with the growing season. Through most of the growing season, the competition was poorer in water deficit conditions.</p><p>The impact of clover on barley before the heading stage showed facilitation symptoms. Interspecific competition reduced the rate of barley biomass accumulation and decreased stem and leaf biomass towards the end of the growing season. Intensified translocation of assimilates from the vegetative parts to grain minimized the decrease in spike biomass.</p><p>Water deficit stress had a more inhibitory effect on the biomass and growth rate of barley than competition, and competition did not exacerbate the adverse influence of water deficit stress on barley. Competition from barley significantly reduced the biomass and biomass accumulation rate of clover. Water deficit stress did not exacerbate barley’s competitive effect on clover, but it strongly inhibited the growth of aboveground biomass in pure-sown clover.</p>

2014 ◽  
Vol 28 (4) ◽  
pp. 685-693 ◽  
Author(s):  
Tye C. Shauck ◽  
Reid J. Smeda

Initial corn (IC) in a replant situation, which is surviving corn from the initial planting, as well as volunteer corn from the previous season, is a competitive weed, but little is known regarding the effect of IC density on grain yield of desirable replant corn (RC). Field trials were established in central and northeast Missouri during 2008 to 2010 to determine the impact of IC on the leaf chlorophyll, stalk diameter, and grain yield of RC. Glyphosate-resistant RC was planted in 76-cm rows, with hybrid glyphosate-resistant IC established for season-long competition between rows at densities of 0 to 8 plants m−2. At vegetative growth stages with six and eight leaf collars and at tasseling (V6, V8, VT), RC leaf nitrogen levels were reduced by 5 to 30% in the presence of IC at densities of one to eight plants m−2compared with control plants lacking competition. Stalk diameters of RC at the VT growth stage were reduced from 8 to 30% by IC as densities increased from 0.5 to 8 plants m−2. Grain yield of row corn was reduced by IC, with yield losses ranging from 7 to 81%. Growth rate and biomass accumulation of hybrid and volunteer corn from V2 to VT were compared in the greenhouse to determine if competitive potential was similar. The second filial generation (F2) of corn from hybrid (DKC ‘63-42′) corn was collected from a field in central Missouri and southeastern Nebraska. There were no statistical differences found in growth rate or biomass accumulation between hybrid and F2corn up to VT, although F2plant biomass was numerically (up to 41%) lower at numerous growth stages. Hybrid corn is likely to be equally or more competitive with RC than volunteer corn. This research documents that in areas where IC remains among replanted corn, the IC has a negative impact at all densities evaluated.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259585
Author(s):  
Gull Mehak ◽  
Nudrat Aisha Akram ◽  
Muhammad Ashraf ◽  
Prashant Kaushik ◽  
Mohamed A. El-Sheikh ◽  
...  

Optimum water availability at different growth stages is one the major prerequisites of best growth and yield production of plants. Exogenous application of plant growth regulators considered effective for normal functioning of plants under water-deficit conditions. A study was conducted to examine the influence of exogenously applied L-methionine on sunflower (Helianthus annuus L.) plants grown under water-deficit conditions. Twenty-five-day old seedlings of four sunflower cultivars, FH331, FH572, FH652 and FH623 were exposed to control (100% F.C.) and drought stress (60% F.C.) conditions. After 30-day of drought stress, L-methionine (Met; 20 mg/L) was applied as a foliar spray to control and drought stressed plants. Water deficit stress significantly reduced shoot fresh and dry weights shoot and root lengths, and chlorophyll a content in all four cultivars. While a significant increase was observed due to water deficiency in relative membrane permeability (RMP), malondialdehyde (MDA), total soluble proteins (TSP), total soluble sugars (TSS), ascorbic acid (AsA) and activity of peroxidase (POD). Although, exogenously applied Met was effective in decreasing RMP, MDA and H2O2 contents, it increased the shoot fresh weight, shoot length, chlorophyll a, chlorophyll a/b ratio, proline contents and the activities of SOD, POD and CAT enzymes in all four cultivars under water deficit stress. No change in AsA and total phenolics was observed due to foliar-applied Met under water stress conditions. Of all sunflower cultivars, cv. FH-572 was the highest and cv. FH-652 the lowest of all four cultivars in shoot fresh and dry weights as well as shoot length under drought stress conditions. Overall, foliar applied L-methionine was effective in improving the drought stress tolerance of sunflower plants that was found to be positively associated with Met induced improved growth attributes and reduced RMP, MDA and H2O2 contents under water deficit conditions.


2019 ◽  
Vol 43 (3) ◽  
pp. 692-711 ◽  
Author(s):  
Benedict C. Oyiga ◽  
Janina Palczak ◽  
Tobias Wojciechowski ◽  
Jonathan P. Lynch ◽  
Ali A Naz ◽  
...  

2020 ◽  
Vol 79 (1) ◽  
pp. 87-94
Author(s):  
Leila Romdhane ◽  
Nicola Dal Ferro ◽  
Amor Slama ◽  
Leila Radhouane

Rising temperatures and increasing water scarcity, which are already important issues, are expected to intensify in the near future due to global warming. Optimizing irrigation in agriculture is a challenge. Understanding the response of crop development stages to water deficit stress provides an opportunity for optimizing irrigation. Here we studied the response of two barley varieties (Rihane, Martin), to water deficit stress at three development stages (tillering, stem elongation, and heading) by measuring water status and grain yield components in a field experiment in Tunisia. The three stages were selected due to their importance in crop growth and grain development. Water deficit stress was initiated by withholding water for 21 days at the three stages with subsequent re-watering. Water deficit led to a progressive decrease in leaf water potential. In both varieties, heading was the stage most sensitive to water deficit. Leaf water potential measurements indicated that water deficit stress was more severe during heading, which to some extent may have influenced the comparison between growth stages. During heading, the number of ears per plant and weight of a thousand grains were reduced by more than 70% and 50%, respectively compared with stress at tillering. Comparison of yield components showed differences between the two barley varieties only when the water deficit was produced during the tillering stage.


2017 ◽  
Vol 9 (12) ◽  
pp. 259
Author(s):  
Amin Namdari ◽  
Abolfazl Baghbani

Due to low rainfall at early autumn, smooth vetch seedling growth in rain-fed lands often is limited by water deficit stress yet the data regarding the reactions of smooth vetch to water deficit at early growth stages are pretty rare. The objective of current study was to examine possibility of using priming treatments (hydro priming and priming salicylic acid) to alleviate the inhibitory effect of water deficiency during early growth of Smooth Vetch. In this respect, seeds were soaked in distilled water (hydro priming) or 0.5 mM solution of SA for 36 h at 10 °C then dried back to original moisture content. Pots were irrigated for 25 days at four levels of available water containing field capacity (FC), 75% FC, 50% FC and 25% FC. In general, seedling emergence and early growth were markedly limited by increasing water deficiency. However, priming treatments particularly with SA caused considerable improvement in either emergence or growth of seedlings (dry weight, length). The obtained results showed that primed samples exhibited higher accumulation of proline, glycine betaine (GB) under all levels of available water except 100% FC and also higher total soluble sugars (TSS) and trehalose under severe water deficit (25% FC). SA primed samples had higher relative water content especially under higher levels of water deficiency. The more balanced water status within SA primed samples also was accompanied with higher accumulation of proline and glycine betaine. There were significant differences between two priming treatments in terms of proline and GB content within seedlings and SA priming considerably increased proline and GB accumulation. In contrast to proline and GB, TSS and trehalose content wasn’t influenced by SA treatment and both hydro and SA primed samples showed statistically similar quantities.


2009 ◽  
Vol 55 (No. 5) ◽  
pp. 181-186 ◽  
Author(s):  
R. Cerkal ◽  
K. Vejražka ◽  
J. Kamler ◽  
J. Dvořák

This work presents the results of a survey that studied simulated plant browsing by herbivores. In 2004–2006, winter wheat, spring barley, and maize field trials were founded in order to monitor the impact of different levels of defoliation (leaf area reduction) on the yield and grain quality. The defoliation was carried out by means of mechanical removal of plant parts in the early growth stages. Selected qualitative parameters were determined in the harvested grain of wheat and barley. Statistically significant influence of leaf area reduction (LAR) on grain yield (decrease by 4–14%) was found only in maize in 2004. No statistically significant influence of the leaf area reduction on thousand grain weight (TGW) was found in any of the studied crops. The leaf area reduction in barley did not affect grain characteristics; however, it had a statistically significant influence on the quality of wheat grain. Moreover, wheat reduction statistically significantly increased the falling number (by 29–39 s) and decreased SDS test values (by 8–9 ml).


2012 ◽  
Vol 39 (2) ◽  
pp. 167 ◽  
Author(s):  
Wouter L. Ballizany ◽  
Rainer W. Hofmann ◽  
M. Z. Zulfiqhar Jahufer ◽  
Brent A. Barrett

White clover (Trifolium repens L.) is an important pasture legume in temperate regions, but growth is often strongly reduced under summer drought. Cloned individuals from a full-sib progeny of a pair cross between two phenotypically distinct white clover populations were exposed to water deficit in pots under outdoor conditions for 9 weeks, while control pots were maintained at field capacity. Water deficit decreased leaf water potential by more than 50% overall, but increased the levels of the flavonol glycosides of quercetin (Q) and the ratio of quercetin and kaempferol glycosides (QKR) by 111% and by 90%, respectively. Water deficit reduced dry matter (DM) by 21%, with the most productive genotypes in the controls showing the greatest proportional reduction. The full-sib progeny displayed a significant increase in the root : shoot ratio by 53% under water deficit. Drought-induced changes in plant morphology were associated with changes in Q, but not kaempferol (K) glycosides. The genotypes with high QKR levels reduced their DM production least under water deficit and increased their Q glycoside levels and QKR most. These data show, at the individual genotype level, that increased Q glycoside accumulation in response to water deficit stress can be positively associated with retaining higher levels of DM production.


2011 ◽  
Vol 39 (2) ◽  
pp. 153 ◽  
Author(s):  
Nourali SAJEDI ◽  
Hamid MADANI ◽  
Ahmad NADERI

This study was carried out to investigate effects of microelements under water deficit stress at different growth stages on antioxidant enzyme alteration, chemical biomarker and grain yield of maize in the years 2007 and 2008. The experiment was conducted in a split plot factorial based on a randomized complete block design with four replications. There were three factors, water deficit stress at different stages of growth as main plot and combinations of selenium (with and without using) and microelements (with and without using) as sub plots. The result indicated that the activity of superoxide dismutase and malondialdehyde content under water deficit stress increased, but grain yield was reduced. The highest grain yield was obtained from optimum irrigation, while in the case of with water deficit stress at V8 stage it was non significant. Selenium spray increased activity of superoxide dismutase enzyme, malondialdehyde content of leaves in V8, R2 and R4 stages and also grain yield. Application of microelements increased the leaves superoxide dismutase enzyme activity and malondialdehyde content. Selenium and microelements spray under water deficit stress conditions during vegetative growth and dough stage increased grain yield in comparison to not spraying elements under water stress conditions. The present results also showed that by using selenium and microelements under water stress can obtain acceptable yield compared to not using these elements.


2006 ◽  
Vol 86 (4) ◽  
pp. 1005-1014 ◽  
Author(s):  
S. S. Malhi ◽  
A. M. Johnston ◽  
J. J. Schoenau ◽  
Z. L. Wang ◽  
C. L. Vera

Dry matter and nutrient accumulation in the growing season are the main factors in the determination of seed yield and nutrient use efficiency. Field experiments were conducted with spring wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and oat (Avena sativa L.) in 1998 and 1999 at Melfort, Saskatchewan, Canada, to determine the biomass accumulation and plant nutrient uptake at different growth stages, and their relationship with days after emergence (DAE) and growing degree days (GDD). All crops generally followed a similar pattern of biomass and nutrient accumulation in the growing season, which increased continuously with growing time, with much faster increase at early growth stages than at late growth stages. Maximum biomass accumulation rate and amount usually occurred at late boot stage (46–47 DAE or 443–460 GDD) and ripening stage (89–90 DAE or 948–1050 GDD), respectively. Maximum rate of nutrient uptake occurred at tillering to stem elongation stages (22–36 DAE or 149–318 GDD). Maximum amount of nutrient uptake generally occurred at the beginning of flowering to medium milk stages (61–75 DAE or 612–831 GDD), except for P in 1998 when it occurred at late milk to ripening stages (80–90 DAE or 922–1050 GDD). In general, the maximum nutrient uptake rate and amount, respectively, occurred earlier than maximum biomass accumulation rate and amount. For various cereal species/cultivars, maximum biomass accumulation rate was 204–232 kg ha-1 d-1, and maximum uptake rate of N, P, K and S, respectively, was 3.2–5.7, 0.30–0.60, 3.85–7.05 and 0.45–0.60 kg ha-1 d-1. The findings suggest that a sufficient supply of nutrients from soil and fertilizers at early growth stages is of great importance for optimum crop yield. Key words: Barley, biomass accumulation, cereals, growth stages, nutrient uptake, oat, wheat


Sign in / Sign up

Export Citation Format

Share Document