scholarly journals Arbuscular Mycorrhizas and Phosphorus Fertilizer Affect Photosynthetic Capacity and Antioxidant Enzyme Activity in Peppermint Under Different Water Conditions

2021 ◽  
Vol 73 (4) ◽  
Author(s):  
Somayyeh Eslami Fard ◽  
Mehrdad Yarnia ◽  
Farhad Farahvash ◽  
Ebrahim Khalilvand Behrouzyar ◽  
Varahram Rashidi

In order to investigate the effect of arbuscular mycorrhizas and phosphorus levels on photosynthetic capacity and enzyme activity in peppermint under different water conditions, an experiment was conducted during the 2017–2018 growing seasons. The experimental treatments comprised water deficiency at three levels (a1: irrigation after 70 mm evaporation from pan of Class A, a2: irrigation after 110 mm evaporation from pan of Class A, and a3: irrigation after 150 mm evaporation from pan of Class A), phosphorus fertilizer at three levels (without phosphorus fertilization, 25% recommended phosphorus amount, and 50% recommended phosphorus amount), and different mycorrhiza species (nonmycorrhizal inoculation, <em>Rhizophagus intraradices</em>, <em>Funneliformis mosseae</em>, <em>Glomus hoi</em>, and mixture of all three species). Results showed that water stress significantly reduced chlorophyll <em>a</em>, chlorophyll <em>b</em>, total chlorophyll, and essential oil yield, but increased the stomatal resistance of peppermint. The essential oil yield of peppermint was significantly reduced by severe water deficit (a3). However, inoculation with <em>R. intraradices</em>, <em>G. hoi</em>, and a mixture of all three species under severe water deficit, increased the essential oil percentage of peppermint by 21%, 21%, and 31.5%, respectively. Application of 50% recommended phosphorus fertilizer increased the yield of essential oil by 18.9%. In addition, menthol increased by 24.1% (highest) under a3 irrigation, using 25% of the optimal dosage of phosphate fertilizer and nonmycorrhizal inoculation. The maximum catalase and peroxidase activity was obtained in the treatment of <em>G. hoi </em>mycorrhizal fertilizer, after application of 25% recommended dose of phosphorus fertilizer and a2 and a3 irrigation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mostafa Amani Machiani ◽  
Abdollah Javanmard ◽  
Mohammad Reza Morshedloo ◽  
Ahmad Aghaee ◽  
Filippo Maggi

AbstractIntercropping of medicinal plants/legumes along with bio-fertilizer application is a relatively new sustainable practice for improving the yield and secondary metabolites production. Here, a 2-years field experiment was performed to evaluate the effects of water deficit stress and arbuscular mycorrhizal fungi (AMF) application (as bio-fertilizer) on nutrients concentration, dry matter yield, essential oil quantity and quality of thyme in intercropping with soybean. Three irrigation levels, including (i) irrigation after depletion of 20% (I20) as non-stressed, 50% (I50) as moderate water deficit and 80% (I80) available water as severe water deficit were applied as the main factor. The sub-factor was represented by different cropping patterns including thyme sole culture, replacement intercrop ratio of 50:50 and 66:34 (soybean: thyme) and the third factor was non-usage (control) and usage of AMF. According to our results, the thyme dry yield under moderate and severe water deficit stress decreased by 35 and 44% in the first year, and by 27 and 40% in the second year compared with non-stressed (I20) plants, respectively. Also, the macro- and micro-nutrients of thyme leaves increased significantly in intercropping patterns after application of AMF. The maximum essential oil percentage of thyme was achieved in 50:50 intercropping ratio treated with AMF. Under moderate and severe water deficits, the major constituents of thyme essential oil including thymol, p-cymene and γ-terpinene were increased in intercropping patterns treated with AMF. Generally, AMF application in intercropping ratio of 50:50 may be proposed to farmers as an eco-friendly approach to achieve desirable essential oil quality and quantity in thyme under water deficit stress conditions.


2021 ◽  
Vol 67 (1) ◽  
pp. 29-41
Author(s):  
Farshad Sorkhi ◽  
Ramin Rostami ◽  
Kazem Ghassemi-Golezani

Abstract This research was conducted as a combined analysis with four replications in two years (2018 ‒ 2019). Treatments were irrigation up to 90%, 50%, and 20% field capacity (as normal irrigation, moderate and severe water deficit stresses, respectively) and foliar application of natural regulators (untreated as control, salicylic acid, spermidine, and methanol). Increasing water deficit stress was led to a significant increase in essential oil percentage and proline content and a significant decrease in yield parameters and seed yield. Most of the traits (except the percentage of essential oil) were affected by natural growth regulators. The highest seed yield (1,127.59 kg/ha), plant biomass (5,426.92 kg/ha), essential oil yield (22.67 kg/ha), and proline content (29.34 μmol/g fresh weight) were obtained in methanol treated plants under normal irrigation. However, the highest amount of these traits under moderate and severe water deficit was recorded for salicylic acid-treated plants. Therefore, foliar spray of methanol was a useful treatment for non-stress conditions, but, application of salicylic acid was the superior treatment for reducing the negative effects of water deficit stress on Foeniculum vulgare.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1891
Author(s):  
Mehrdad Hanifei ◽  
Shaghayegh Mehravi ◽  
Mostafa Khodadadi ◽  
Anita Alice Severn-Ellis ◽  
David Edwards ◽  
...  

Coriander (Coriander sativum L.) is an annual herb mainly cultivated for its seed characteristics. Drought stress is a major problem which affects coriander behaviour through biochemical responses. This study aimed to determine the nature and magnitude of epistasis in inheritance of seed yield (SY), percent of dehulled seed (PODS), percent of seed hulls (POSH), essential oil content (EOC), essential oil yield (EOY), dehulled seed fatty acid content (DSFAC), hull fatty acid content (HFAC), fatty acid content (FAC), and fatty acid yield (FAY), and to estimate additive and dominance variance for the traits not influenced by epistasic effects. Three testers, TN-59-158 (highly drought-susceptible), TN-58-230 (highly drought-tolerant, but low-yielding), and their F1 hybrid were each crossed for six genotypes. The experiment was performed under different levels of water deficit: control (C), moderate water deficit (MWD), and severe water deficit (SWD) conditions. Epistasis affected the expression of SY, EOC, EOY, FAC, and FAY in all water conditions, PODS in C, POSH in SWD, HFAC in MWD, and DSFAC in both C and MWD conditions. Total epistasic effects were partitioned, showing that both [i] and [j + l] type interactions were significant, with a prevalent influence of [i] type interactions on these traits except for POSH and FAC in the SWD condition, which exhibited a higher value of the [j + l] type. Both additive and non-additive gene actions were significant for those traits not significantly affected by epistasis in C, MWD, or SWD conditions. An additive type of gene action was preponderant for PODS in MWD and SWD, POSH in MWD, DSFAC in SWD, and HFAC in C and SWD conditions.


2019 ◽  
Vol 17 (03) ◽  
pp. 255-264 ◽  
Author(s):  
Amir Gholizadeh ◽  
Hamid Dehghani ◽  
Mostafa Khodadadi

AbstractDrought stress restricts the production of agricultural crops through morphological, physiological and biochemical changes in plants. This study explored the genetic control of physiological traits related to drought in coriander. In a diallel analysis, all six parents, their 15 F1 hybrids and 15 F2 populations were subjected to different irrigation regimes including well-watered, mild and severe water deficit stress. Drought stress decreased the relative chlorophyll content (RCC), the relative water content (RWC), chlorophyll a (Chla), chlorophyll b (Chlb), total chlorophyll (TChl) content, carotenoids (Car) and essential oil yield (EOY) in F1 and F2 generations. General combining ability (GCA) and specific combining ability effects were highly significant for all traits in F1 and F2 generations. Additive gene action was predominant for Chla, Chlb, TChl and Car under well-watered condition while non-additive gene effects were more important under mild and severe water deficit stresses in F1 and F2 generations for the above traits. Additive gene effects were more important for RCC, RWC and electrolyte leakage (EL) traits in both F1 and F2 generations under mild and severe water deficit stresses. In conclusion, the high narrow-sense heritability and significant genetic correlations between EOY and RCC, RWC and EL suggest that these traits can be used as surrogates to identify superior genotypes for arid and semi-arid regions. Also, the parental lines, P4 and P6 had the best GCA for RCC, RWC, Chla, Chlb, TChl, Car, essential oil content and EOY.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huimin Zhang ◽  
Hongguang Yan ◽  
Quan Li ◽  
Hui Lin ◽  
Xiaopeng Wen

AbstractThe floral fragrance of plants is an important indicator in their evaluation. The aroma of sweet cherry flowers is mainly derived from their essential oil. In this study, based on the results of a single-factor experiment, a Box–Behnken design was adopted for ultrasound- and microwave-assisted extraction of essential oil from sweet cherry flowers of the Brooks cultivar. With the objective of extracting the maximum essential oil yield (w/w), the optimal extraction process conditions were a liquid–solid ratio of 52 mL g−1, an extraction time of 27 min, and a microwave power of 435 W. The essential oil yield was 1.23%, which was close to the theoretical prediction. The volatile organic compounds (VOCs) of the sweet cherry flowers of four cultivars (Brooks, Black Pearl, Tieton and Summit) were identified via headspace solid phase microextraction (SPME) and gas chromatography–mass spectrometry (GC–MS). The results showed that a total of 155 VOCs were identified and classified in the essential oil from sweet cherry flowers of four cultivars, 65 of which were shared among the cultivars. The highest contents of VOCs were aldehydes, alcohols, ketones and esters. Ethanol, linalool, lilac alcohol, acetaldehyde, (E)-2-hexenal, benzaldehyde and dimethyl sulfide were the major volatiles, which were mainly responsible for the characteristic aroma of sweet cherry flowers. It was concluded that the VOCs of sweet cherry flowers were qualitatively similar; however, relative content differences were observed in the four cultivars. This study provides a theoretical basis for the metabolism and regulation of the VOCs of sweet cherry flowers.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1397
Author(s):  
William N. Setzer ◽  
Lam Duong ◽  
Trang Pham ◽  
Ambika Poudel ◽  
Cuong Nguyen ◽  
...  

Virginia mountain mint (Pycnanthemum virginianum) is a peppermint-flavored aromatic herb of the Lamiaceae and is mainly used for culinary, medicinal, aromatic, and ornamental purposes. North Alabama’s climate is conducive to growing mint for essential oils used in culinary, confectionery, and medicinal purposes. There is, however, a need for varieties of P. virginianum that can be adapted and easily grown for production in North Alabama. Towards this end, four field-grown varieties with three harvesting times (M1H1, M1H2, M1H3; M2H1, M2H2, M2H3; M3H1, M3H2, M3H3, M4H1, M4H2, M4H3) were evaluated for relative differences in essential oil yield and composition. Thirty-day-old greenhouse-grown plants of the four varieties were transplanted on raised beds in the field at the Alabama A & M University Research Station in North Alabama. The plots were arranged in a randomized complete block with three replications. The study’s objective was to compare the four varieties for essential oil yield and their composition at three harvest times, 135, 155, and 170 days after planting (DAP). Essential oils were obtained by hydrodistillation with continuous extraction with dichloromethane using a Likens–Nickerson apparatus and analyzed by gas chromatographic techniques. At the first harvest, the essential oil yield of the four varieties showed that M1H1 had a yield of 1.15%, higher than M2H1, M3H1, and M4H1 with 0.91, 0.76, and 1.03%, respectively. The isomenthone concentrations increased dramatically through the season in M1 (M1H1, M1H2, M1H3) by 19.93, 54.7, and 69.31%, and M3 (M3H1, M3H2, M3H3) by 1.81, 48.02, and 65.83%, respectively. However, it increased only slightly in M2 and M4. The thymol concentration decreased slightly but not significantly in all four varieties; the thymol in M2 and M4 was very high compared with M1 and M3. The study showed that mountain mint offers potential for production in North Alabama. Two varieties, M1 and M3, merit further studies to determine yield stability, essential oil yield, composition, and cultivation development practices.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Jia ◽  
Ke Mao ◽  
Ping Wang ◽  
Yu Wang ◽  
Xumei Jia ◽  
...  

AbstractWater deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.


Sign in / Sign up

Export Citation Format

Share Document