scholarly journals Genetic Characterization of a Novel Composite Transposon Carrying armA and aac(6)-Ib Genes in an Escherichia coli Isolate from Egypt

2017 ◽  
Vol 66 (2) ◽  
pp. 163-169
Author(s):  
Mona T. Kashef ◽  
Omneya M. Helmy

Aminoglycosides are used in treating a wide range of infections caused by Gram-positive and Gram-negative bacteria; however, aminoglycoside resistance is common and occurs by several mechanisms. Among these mechanisms is bacterial rRNA methylation by the 16S rRNA methyl transferase (16S-RMTase) enzymes; but data about the spread of this mechanism in Egypt are scarce. Cephalosporins are the most commonly used antimicrobial agents in Egypt; therefore, this study was conducted to determine the frequency of 16S-RMTase among third generation cephalosporin-resistant clinical isolates in Egypt. One hundred and twenty three cephalosporin resistant Gram-negative clinical isolates were screened for aminoglycosides resistance by the Kirby Bauer disk diffusion method and tested for possible production of 16S-RMTase. PCR testing and sequencing were used to confirm the presence of 16S-RMTase and the associated antimicrobial resistance determinants, as well as the genetic region surrounding the armA gene. Out of 123 isolates, 66 (53.66%) were resistant to at least one aminoglycoside antibiotic. Only one Escherichia coli isolate (E9ECMO) which was totally resistant to all tested aminoglycosides, was confirmed to have the armA gene in association with blaTEM-1, blaCTX-M-15, blaCTX-M-14 and aac(6)-Ib genes. The armA gene was found to be carried on a large A/C plasmid. Genetic mapping of the armA surrounding region revealed, for the first time, the association of armA with aac(6)-Ib on the same transposon. In conclusion, the isolation frequency of 16S-RMTase was low among the tested aminoglycoside-resistant clinical samples. However, a novel composite transposon has been detected conferring high-level aminoglycosides resistance.

2019 ◽  
Vol 16 (3(Suppl.)) ◽  
pp. 0682 ◽  
Author(s):  
MKK Et al.

The present study aims to detect CTX-M-type ESBL from Escherichia coli clinical isolates and to analyze their antibotic susceptibility patterns. One hundred of E. coli isolates were collected from different clinical samples from a tertiary hospital. ESBL positivity was determined by the disk diffusion method. PCR used for amplification of CTX-M-type ESBL produced by E. coli. Out of 100 E. coli isolates, twenty-four isolates (24%) were ESBL-producers. E. coli isolated from pus was the most frequent clinical specimen that produced ESBL (41.66%) followed by urine (34.21%), respiratory (22.23%), and blood (19.05%).  After PCR amplification of these 24 isolates, 10 (41.66%) isolates were found to possess CTX-M genes. The CTX-M type ESBL producing E. coli against antibiotics belonging to different families showed the highest resistance rates to Ampicillin (100%), Cefotaxime (97%), Cefuroxime (95%), and Ciprofoxacin (86%). Carbapenem groups of antibiotics, Meropenem (89%) and Imipenem (85%) have the highest susceptibility rate among all antibiotics used in this study. The outcome of the antimicrobial susceptibility testing of significant CTX-M- type ESBL producing E. coli could be useful to avoid failure or prolong treatments.


2007 ◽  
Vol 59 (2) ◽  
pp. 508-512 ◽  
Author(s):  
B.R. Paneto ◽  
R.P. Schocken-Iturrino ◽  
C. Macedo ◽  
E. Santo ◽  
J.M. Marin

The occurrence of toxigenic Escherichia coli in raw milk cheese was surveyed in Middle Western Brazil. Fifty samples of cheese from different supermarkets were analyzed for E.coli. The isolates were serotyped and screened for the presence of verotoxigenic E. coli (VTEC) and enterotoxigenic E. coli (ETEC) by Polymerase Chain Reaction (PCR). The susceptibility to thirteen antimicrobial agents was evaluated by the disk diffusion method. E.coli were recovered from 48 (96.0%) of the samples. The serogroups identified were O125 (6.0%), O111 (4.0%), O55 (2.0%) and O119 (2.0%). Three (6.0%) and 1(2.0%) of the E.coli isolates were VTEC and ETEC, respectively. Most frequent resistance was observed to the following antimicrobials: cephalothin (60.0%), nalidixic acid (40.0%), doxycyclin (33.0%), tetracycline (31.0%) and ampicillin (29.0%).


Author(s):  
Fateme DAVARZANI ◽  
Navid SAIDI ◽  
Saeed BESHARATI ◽  
Horieh SADERI ◽  
Iraj RASOOLI ◽  
...  

Background: Pseudomonas aeruginosa is one of the most common opportunistic bacteria causing nosocomial infections, which has significant resistance to antimicrobial agents. This bacterium is a biofilm and alginate producer. Biofilm increases the bacterial resistance to antibiotics and the immune system. Therefore, the present study was conducted to investigate the biofilm formation, alginate production and antimicrobial resistance patterns in the clinical isolates of P. aeruginosa. Methods: One hundred isolates of P. aeruginosa were collected during the study period (from Dec 2017 to Jul 2018) from different clinical samples of the patients admitted to Milad and Pars Hospitals at Tehran, Iran. Isolates were identified and confirmed by phenotypic and genotypic methods. Antimicrobial susceptibility was specified by the disk diffusion method. Biofilm formation and alginate production were measured by microtiter plate and carbazole assay, respectively. Results: Sixteen isolates were resistant to all the 12 studied antibiotics. Moreover, 31 isolates were MultidrugResistant (MDR). The highest resistance rate was related to ofloxacin (36 isolates) and the least resistance was related to piperacillin-tazobactam (21 isolates). All the isolates could produce the biofilm and alginate. The number of isolates producing strong, medium and weak biofilms was equal to 34, 52, and 14, respectively. Alginate production was more than 400 μg/ml in 39 isolates, 250-400 μg/ml in 51 isolates and less than 250 μg/ml in 10 isolates. Conclusion: High prevalence of MDR, biofilm formation, and alginate production were observed among the clinical isolates of P. aeruginosa. The results also showed a significant relationship between the amount of alginate production and the level of biofilm formation.


2009 ◽  
Vol 57 (3) ◽  
pp. 357-367 ◽  
Author(s):  
Boglárka Sellyei ◽  
Zsuzsanna Varga ◽  
Katalin Szentesi-Samu ◽  
Éva Kaszanyitzky ◽  
Tibor Magyar

Pasteurella multocida causes infectious diseases in a wide range of animal species. Antimicrobial therapy is still an effective tool for treatment. Generally, P. multocida isolates are susceptible to most of the widely used commercial antimicrobial agents but their excessive and unjustified use accelerates the emergence of resistant strains. We defined the antimicrobial sensitivity pattern of 56 P. multocida strains isolated from poultry (20) and swine [16 P. multocida toxin (PMT) positive and 20 PMT negative] to 16 widely applied antibiotics (apramycin, cefquinome, chloramphenicol, colistin, doxycycline, enrofloxacin, erythromycin, florfenicol, flumequine, neomycin, oxolinic acid, penicillin, trimethoprim potentiated sulphamethoxazole, sulphonamide compounds, tetracycline, tulathromycin) by the disk diffusion method. The majority of the strains was susceptible to most of the antimicrobial agents tested. However, the resistance to sulphonamides, tetracyclines, first-generation quinolones and aminoglycosides was remarkable, and thus the use of these compounds for the treatment of infection caused by P. multocida is not recommended. On the other hand, the antimicrobial activity of the classical penicillin, the newer macrolide (tulathromycin), the third-generation fluoroquinolone (enrofloxacin) and the fourth-generation cephalosporin (cefquinome) proved to be satisfactory against this bacterium.


2015 ◽  
Vol 9 (05) ◽  
pp. 496-504 ◽  
Author(s):  
Divya Sukumaran ◽  
Abdulla A Mohamed Hatha

Introduction: Escherichia coli strains can cause a variety of intestinal and extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains have the ability to cause severe extraintestinal infections. Multidrug resistance among ExPEC could complicate human infections. Methodology: Escherichia coli strains were isolated during the period of January 2010 to December 2012 from five different stations set at Cochin estuary. Susceptibility testing was determined by the disk-diffusion method using nine different antimicrobial agents. A total of 155 strains of Escherichia coli were screened for the presence of virulence factor genes including papAH, papC, sfa/focDE, iutA,and kpsMT II associated with ExPEC. Results: Among the 155 E. coli isolates, 26 (16.77%), carried two or more virulence genes typical of ExPEC. Furthermore, 19.23% of the ExPEC isolates with multidrug resistance were identified to belong to phylogenetic groups B2 and D. Statistically significant association of iutA gene in ExPEC was found with papC (p < 0.001) and kpsMT II (p < 0.001) genes. ExPEC isolates were mainly resistant to ampicillin (23.07%), tetracycline (19.23%), co-trimoxazole (15.38%), and cefotaxime (15.38%). The adhesion genes papAH and sfa/focDE were positively associated with resistance to gentamicin, chloramphenicol, and cefotaxime (p < 0.05). Conclusions: Co-occurrence of virulence factor genes with antibiotic resistance among ExPEC poses considerable threat to those who use this aquatic system for a living and for recreation.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Seema Mittal ◽  
Pooja Singla ◽  
Antariksha Deep ◽  
Kiran Bala ◽  
Rama Sikka ◽  
...  

Aims. This study was aimed at knowing the prevalence of vancomycin and high level aminoglycoside resistance in enterococcal strains among clinical samples.Study Design. It was an investigational study.Place and Duration of Study. It was conducted on 100Enterococcusisolates, in the Department of Microbiology, Pt. BDS PGIMS, Rohtak, over a period of six months from July to December 2014.Methodology. Clinical specimens including urine, pus, blood, semen, vaginal swab, and throat swab were processed andEnterococcusisolates were identified by standard protocols. Antibiotic sensitivity testing of enterococci was performed using Kirby-Bauer disc diffusion method.Results. High level gentamicin resistance (HLGR) was more common in urine samples (41.5%) followed by blood (36%) samples. High level streptomycin resistance (HLSR) was more common in pus samples (52.6%) followed by blood samples (36%). Resistance to vancomycin was maximum in blood isolates.Conclusion. Enterococci resistant to multiple antimicrobial agents have been recognized. Thus, it is crucial for laboratories to provide accurate antimicrobial resistance patterns for enterococci so that effective therapy and infection control measures can be initiated.


2012 ◽  
Vol 6 (06) ◽  
pp. 489-494 ◽  
Author(s):  
Alaa Hani Al-Charrakh

Introduction: The presence of microorganisms in pharmaceuticals is undesirable because they may cause spoilage of the product and may present an infection hazard to the consumers or patients.  Methodology: A total of 102 samples of oral and topical non-sterile pharmaceutical products were collected at random from different drug houses and pharmacies in Iraq, to investigate the microbial contamination of these products. Bacterial isolates recovered from these medicaments were subjected to susceptibility testing against various antibiotics by disk diffusion method according to Clinical and Laboratory Standards (CLSI) guidelines. Results: The results revealed that the occurrence of Gram-positive bacteria was in oral and topical medicaments while Gram-negative bacteria were only detected in topical medicaments. More than 58% of Bacillus isolates were resistant to lincomycin and Bacillus mycoides isolates were resistant to beta-lactam antibiotics and trimethoprim-sulfamethoxazole. Staphylococcus spp. showed a relatively high resistance to ampicillin, amoxicillin, penicillin, tetracycline, and trimethoprim-sulfamethoxazole. S. epidermidis had the highest number of multi-resistant isolates. Furthermore, 87.5% of isolated Gram-negative rods showed high resistance to beta-lactam antibiotics and 75% of them were highly resistant to erythromycin. One isolate of Pseudomonas aeruginosa was the most resistant among all Gram-negative rod isolates. Conclusion: The high rate of resistance to antimicrobial agents of bacterial isolates recovered from oral and topical medicaments in this study may indicate a widespread antibiotic resistance among bacteria isolated from different sources, including those of anthropological and environmental origin. 


2015 ◽  
Vol 13 (1) ◽  
pp. 45-51 ◽  
Author(s):  
AKMA Islam ◽  
M Rahman ◽  
A Nahar ◽  
A Khair ◽  
MM Alam

Molecular technique was used to investigate the prevalence of virulent diarrheic genes in pathogenic Escherichia coli and their antibiotic sensitivity patterns. A hundred samples from 100 different diarrheic calves from mid-north-western part of Bangladesh were screened for the presence of virulence factors associated with diarrhea. Following isolation and identification on the basis of cultural, morphological and biochemical properties, the presence of the virulence genes such as eaeA, bfpA, elt, est, stx1 and stx2 were examined using PCR. Antimicrobial susceptibility of 57 E. coli was determined by agar disk diffusion method for 8 antimicrobial agents. Out of 100 samples 57 (57%) were found to be positive for E. coli and their distribution rates according to their age, breed and sex were  66.7% ( 6 days old ), 85.7% (Sahiwal breed) and in  64.2 % (female calves) respectively. Among 57 E. coli isolates, only 16 isolates were analyzed for the detection of the said genes. Among them, only eaeA gene was detected in 2 E. coli isolates (12.5 %). Antibiotic resistance patterns revealed that Oxacillin, Rifampicin and Penicillin were  100% resistant followed by Erythromycin which was more than 80% resistant. In case of Amoxicillin and Tetracycline, about 59.65% and 61.40% were found to be resistant respectively whereas all 57 E. coli isolates showed moderately susceptible (30%) to Cefuroxime, a second generation Cephalosporin. Therefore, none of the eight antimicrobials studied can not be recommended as single best therapeutic agent for the treatment of neonatal calf diarrhea. In addition, this study indicated that diarrhea in calves in these locations can be ascribed to mainly Enteropathogenic E. coli (EPEC) which was atypical (only contained the eaeA genes but not bfpA). However, further studies are necessary to characterize the isolated eaeA gene positive E. coli by serotyping, tissue culture assay and other molecular techniques to find out the potentiality of those virulent genes contributing pathogenicity of E. coli causing diarrhea in calves.DOI: http://dx.doi.org/10.3329/bjvm.v13i1.23716Bangl. J. Vet. Med. (2015). 13 (1): 45-51


Chemotherapy ◽  
2017 ◽  
Vol 62 (3) ◽  
pp. 194-198 ◽  
Author(s):  
Socorro Leyva-Ramos ◽  
Denisse de Loera ◽  
Jaime Cardoso-Ortiz

Background: Fluoroquinolones are widely prescribed synthetic antimicrobial agents. Quinolones act by converting their targets, gyrase and topoisomerase IV, into toxic enzymes that fragment the bacterial chromosome; the irreversible DNA damage eventually causes the killing of bacteria. Thorough knowledge of the structure-activity relationship of quinolones is essential for the development of new drugs with improved activity against resistant strains. Methods: The compounds were screened for their antibacterial activity against 4 representing strains using the Kirby-Bauer disk diffusion method. Minimal inhibitory concentration (MIC) was determined by measuring the diameter of the inhibition zone using concentrations between 250 and 0.004 μg/mL. Results: MIC of derivatives 2, 3, and 4 showed potent antimicrobial activity against gram-positive and gram-negative bacteria. The effective concentrations were 0.860 μg/mL or lower. MIC for compounds 5-11 were between 120 and 515 μg/mL against Escherichia coli and Staphylococcus aureus, and substituted hydrazinoquinolones 7-10 showed poor antibacterial activity against gram-positive and gram-negative bacteria compared with other quinolones. Conclusion: Compounds obtained by modifications on C-7 of norfloxacin with the acetylated piperazinyl, halogen atoms, and substituted hydrazinyl showed good in vitro activity - some even better than the original compound.


Diseases ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Ram Shankar Prasad Sah ◽  
Binod Dhungel ◽  
Binod Kumar Yadav ◽  
Nabaraj Adhikari ◽  
Upendra Thapa Shrestha ◽  
...  

Background: Antimicrobial resistance (AMR) among Gram-negative pathogens, predominantly ESBL-producing clinical isolates, are increasing worldwide. The main aim of this study was to determine the prevalence of ESBL-producing clinical isolates, their antibiogram, and the frequency of ESBL genes (blaTEM and blaCTX-M) in the clinical samples from patients. Methods: A total of 1065 clinical specimens from patients suspected of heart infections were collected between February and August 2019. Bacterial isolates were identified on colony morphology and biochemical properties. Thus, obtained clinical isolates were screened for antimicrobial susceptibility testing (AST) using modified Kirby–Bauer disk diffusion method, while ESBL producers were identified by using a combination disk diffusion method. ESBL positive isolates were further assessed using conventional polymerase chain reaction (PCR) to detect the ESBL genes blaTEM and blaCTX-M. Results: Out of 1065 clinical specimens, 17.8% (190/1065) showed bacterial growth. Among 190 bacterial isolates, 57.4% (109/190) were Gram-negative bacteria. Among 109 Gram-negative bacteria, 40.3% (44/109) were E. coli, and 30.2% (33/109) were K. pneumoniae. In AST, 57.7% (n = 63) Gram-negative bacterial isolates were resistant to ampicillin and 47.7% (n = 52) were resistant to nalidixic acid. Over half of the isolates (51.3%; 56/109) were multidrug resistant (MDR). Of 44 E. coli, 27.3% (12/44) were ESBL producers. Among ESBL producer E. coli isolates, 58.4% (7/12) tested positive for the blaCTX-M gene and 41.6% (5/12) tested positive for the blaTEM gene. Conclusion: Half of the Gram-negative bacteria in our study were MDR. Routine identification of an infectious agent followed by AST is critical to optimize the treatment and prevent antimicrobial resistance.


Sign in / Sign up

Export Citation Format

Share Document