scholarly journals PARAMETERIZATION OF ENVIRONMENTAL INFLUENCES BY AUTOMATED CHARACTERISTIC DIAGRAMS FOR THE DECOUPLED FLUID AND STRUCTURAL-MECHANICAL SIMULATIONS

2019 ◽  
Vol 19 (1) ◽  
pp. 98-113
Author(s):  
Janine GLÄNZEL ◽  
Tharun Suresh  KUMAR ◽  
Christian NAUMANN ◽  
Matthias PUTZ

Thermo-elastic effects contribute the most to positioning errors in machine tools especially in operations where high precision machining is involved. When a machine tool is subjected to changes in environmental influences such as ambient air temperature, velocity or direction, then flow (CFD) simulations are necessary to effectively quantify the thermal behaviour between the machine tool surface and the surrounding air (fluid). Heat transfer coefficient (HTC) values effectively represent this solid-fluid heat transfer and it serves as the boundary data for thermo-elastic simulations. Thereby, deformation results can be obtained. This two-step simulation procedure involving fluid and thermo-structural simulations is highly complex and time-consuming. A suitable alternative for the above process can be obtained by introducing a clustering algorithm (CA) and characteristic diagrams (CDs) in the workflow. CDs are continuous maps of a set of input variables onto a single output variable, which are trained using data from a limited number of CFD simulations which is optimized using the clustering technique involving genetic algorithm (GA) and radial basis function (RBF) interpolation. The parameterized environmental influences are mapped directly onto corresponding HTC values in each CD. Thus, CDs serve as look-up tables which provide boundary data (HTC values along with nodal information) under several load cases (combinations of environmental influences) for thermo-elastic simulations. Ultimately, a decoupled fluid-structural simulation system is obtained where boundary (convection) data for thermo-mechanical simulations can be directly obtained from CDs and would no longer require fluid simulations to be carried out again. Thus, a novel approach for the correction of thermo-elastic deformations on a machine tool is obtained.

2018 ◽  
Vol 18 (2) ◽  
pp. 41-53
Author(s):  
Janine GLAENZEL ◽  
Steffen IHLENFELDT ◽  
Christian NAUMANN ◽  
Matthias PUTZ

Thermo-elastic deformations represent one of the main reasons for positioning errors in machine tools. Investigations of the thermo-mechanical behaviour of machine tools, especially during the design phase, rely mainly on thermo-elastic simulations. These require the knowledge of heat sources and sinks and assumptions on the heat dissipation via convection, conduction and radiation. Forced convection such as that caused by moving assemblies has both a large influence on the heat dissipation to the surrounding air. The most accurate way of taking convection into account is via computational fluid dynamics (CFD) simulations. These simulations compute heat transfer coefficients for every finite element on the machine tool surface, which can then be used as boundary conditions for accurate thermo-mechanical simulations. Transient thermo-mechanical simulations with moving assemblies thus require a CFD simulation during each time step, which is very time-consuming. This paper presents an alternative by using characteristic diagrams to interpolate the CFD simulations. The new method uses precomputed thermal coefficients of a small number of load cases as support points to estimate the convection of all relevant load cases (i.e. ambient conditions). It will be explained and demonstrated on a machine tool column.


Author(s):  
Robert J. Boyle ◽  
Louis M. Russell

Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane passage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Results were obtained for Reynolds numbers based on inlet velocity and axial chord between 73,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.


Author(s):  
Dilesh Maharjan ◽  
Mustafa Hadj-Nacer ◽  
Miles Greiner ◽  
Stefan K. Stefanov

During vacuum drying of used nuclear fuel (UNF) canisters, helium pressure is reduced to as low as 67 Pa to promote evaporation and removal of remaining water after draining process. At such low pressure, and considering the dimensions of the system, helium is mildly rarefied, which induces a thermal-resistance temperature-jump at gas–solid interfaces that contributes to the increase of cladding temperature. It is important to maintain the temperature of the cladding below roughly 400 °C to avoid radial hydride formation, which may cause cladding embrittlement during transportation and long-term storage. Direct Simulation Monte Carlo (DSMC) method is an accurate method to predict heat transfer and temperature under rarefied condition. However, it is not convenient for complex geometry like a UNF canister. Computational Fluid Dynamics (CFD) simulations are more convenient to apply but their accuracy for rarefied condition are not well established. This work seeks to validate the use of CFD simulations to model heat transfer through rarefied gas in simple two-dimensional geometry by comparing the results to the more accurate DSMC method. The geometry consists of a circular fuel rod centered inside a square cross-section enclosure filled with rarefied helium. The validated CFD model will be used later to accurately estimate the temperature of an UNF canister subjected to vacuum drying condition.


2011 ◽  
Vol 675-677 ◽  
pp. 987-990
Author(s):  
Ling Tang ◽  
Xu Dong Wang ◽  
Hai Jing Zhao ◽  
Man Yao

In this paper, the flow, heat transfer and stress during solidification process of the machine tool bed weighed about 2.5ton that has been optimized by structural topologymethod, was calculated with ProCAST software, and the causes of the crack forming in the casting of the machine tool bed was analysed. According to the calculation results, the structural design of the local part where cracks tends to form has been improved, and the heat transfer and the stress are calculated again. By comparing the temperature field with filling of molten cast iron and without filling, it has been found that there was little effect of filling on the results of temperature distribution of the cast, therefore the effect of filling can be ignored in the following temperature field calculation to save computation time. The model has been simplified in the stress field calculation with considering the complexity of the machine tool bed and the cost of computation. Then, the merits and demerits of the original design and the improved design are compared and analyzed depending on the calculated temperature and stress results. It is suggested that the improved one could get a more uniform temperature distribution and then the trend of the crack occurring can be greatly reduced. These results could provide a guide for the actual casting production, achieving the scientific control of the production of castings, ensuring the quality of the castings.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


1975 ◽  
Vol 97 (1) ◽  
pp. 47-53 ◽  
Author(s):  
R. E. Forbes ◽  
J. W. Cooper

Natural convection in horizontal layers of water cooled from above to near freezing was studied analytically. The water was confined laterally and underneath by rigid insulators, and the upper horizontal surface was subjected to: (1) a constant 0C temperature, rigid conducting boundary, and (2) a free, water to air convection boundary condition, in which the convective heat transfer coefficient was held constant at values of 5.68 W/m2 · K and 284 W/m2 · K (1.0 and 50.0 Btu/hr ft2F) and the temperature of the ambient air was maintained at 0C. The ratios of the width to the depth of the rectangular water layers under consideration were W/D = 1, 3, and 6. Initially the water is assumed to be at a uniform temperature of either 4C or 8C, and then the upper surface boundary condition was suddenly applied. It was observed in all cases for which the initial water temperature was 4C, that the water remained stagnant and became thermally stratified. Heat transfer application of either of the surface boundary conditions to water initially at 8C produced large convective eddies extending from the bottom to the top of the layer of water. As the liquid layer cooled further, two distinct horizontal regions appeared, the 4C isothermal line separating the two. This produces a region of hydrodynamic instability in the fluid since the maximum density fluid (4C) is physically located above the less dense fluid in the lower portion of the cavity. The large eddies which appeared initially were confined to the hydrodynamically unstable region bounded by the 4C isotherm and the bottom of the cavity. The action of viscous shearing forces upon the stable water above the 4C isotherm produced a second “layer” of eddies. An alternating direction implicit finite difference method was used to solve the coupled system of partial differential equations. The paper presents transient isotherms and streamlines and a discussion of the effect of maximum density on the flow patterns.


Cryogenics ◽  
2014 ◽  
Vol 62 ◽  
pp. 110-117 ◽  
Author(s):  
Zhixiang Zhao ◽  
Yanzhong Li ◽  
Lei Wang ◽  
Zhan Liu ◽  
Jiang Zheng

Algorithms ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 197
Author(s):  
Ali Seman ◽  
Azizian Mohd Sapawi

In the conventional k-means framework, seeding is the first step toward optimization before the objects are clustered. In random seeding, two main issues arise: the clustering results may be less than optimal and different clustering results may be obtained for every run. In real-world applications, optimal and stable clustering is highly desirable. This report introduces a new clustering algorithm called the zero k-approximate modal haplotype (Zk-AMH) algorithm that uses a simple and novel seeding mechanism known as zero-point multidimensional spaces. The Zk-AMH provides cluster optimality and stability, therefore resolving the aforementioned issues. Notably, the Zk-AMH algorithm yielded identical mean scores to maximum, and minimum scores in 100 runs, producing zero standard deviation to show its stability. Additionally, when the Zk-AMH algorithm was applied to eight datasets, it achieved the highest mean scores for four datasets, produced an approximately equal score for one dataset, and yielded marginally lower scores for the other three datasets. With its optimality and stability, the Zk-AMH algorithm could be a suitable alternative for developing future clustering tools.


2021 ◽  
Vol 63 (4) ◽  
pp. 341-349
Author(s):  
Mete Onur Kaman ◽  
Nevin Celik ◽  
Resul Das

Abstract In present the study, sudden cooling, in other words thermal shock, is applied to a plate that is originally a functionally graded material (FGM). The flat plate is assumed to have an edge crack on it. Hence a numerical couple-field analysis is performed on the plate. The FGM is a combination of Ni and Al2O3. The thermal and mechanical properties of the FGM are assumed to depend on temperature variation. The mixing percentages of the Ni and Al2O3 throughout the plate are considered to vary (i) linearly, (ii) quadratically and (iii) in half-order. In order to solve the problem, a new subroutine depending on temperature is written using APDL (ANSYS Parametric Design Language) codes. Three values of the heat transfer coefficient are applied to the initially heated plate. As a result, the transient temperature variation and stress intensity factor are presented to show the thermo-mechanical relation of the plate. The material properties changing with temperature results in more reliable temperature values. Increasing the heat transfer coefficient results in better cooling and in a lesser amount of time to reach ambient air temperature.


Sign in / Sign up

Export Citation Format

Share Document