scholarly journals Gastrointestinal symptoms in the course of COVID-19

2020 ◽  
Vol 74 ◽  
pp. 498-503
Author(s):  
Grzegorz K. Jakubiak ◽  
Józefina Ochab-Jakubiak ◽  
Grzegorz Cieślar ◽  
Agata Stanek

COVID-19 is an infectious disease caused by novel coronavirus SARS-CoV-2, a betacoronavirus comprised of single-stranded ribonucleic acid (RNA), the first time reported in December 2019 as pneumonia with unknown etiology in Wuhan City in China. It is a very important current problem for public health worldwide. A typical clinical course includes dyspnoea, dry cough and fever. In the presented paper we conducted the literature review and described the most important facts within the current state of knowledge about symptomatology and pathophysiology of gastrointestinal dysfunction in the course of COVID-19. Data about prevalence of gastrointestinal symptoms in the course of COVID-19 show wide divergence in the cited literature. Generally, the most common reported digestive symptoms were loss of appetite, nausea and vomiting. Liver injury in the course of COVID-19 is also an important and not well understood problem. The virus has high affinity to cells containing angiotensin- -converting enzyme 2 (ACE2) protein. Digestive symptoms of COVID-19 may be associated with ACE2 expression in epithelial cells in upper oesophagus, ileum and colon. Previous scientific reports have elucidated the role of ACE2 in modulating intestinal inflammation and diarrhoea.

2021 ◽  
pp. 7-13

On 31 December 2019, the cases of pneumonia caused by unknown etiology had emerged. These cases were reported in Wuhan city, Hubei Province of China. Chinese authorities identified the causative agent and announced to be a novel coronavirus. The tentative name of disease is COVID-19, abbreviating of coronavirus disease-19. The incubation period of the disease ranges from 2 to 14 days, however, 80% of the patients have mild or asymptomatic illness while 15 % and 5% of the patients had exhibited sever and critical cases respectively. The etiology of COVID-19 was known as SARS-CoV-2 and belongs to betacoranviruse as reported by the International Committee on Taxonomy of Viruses (ICTV) especially Coronaviridae Study Group (CSG). In addition, this virus is currently believed to be within bat-coronaviruses besides it possesses a close relationship with SARS-CoV more than MERS-CoV. Although, the majority of the diagnosed patients had symptoms, there were asymptomatic persons who can spread the SARS-CoV-2. Upon the emergence of worldwide distribution of this virus, the WHO had declared it as a global outbreak and pandemic. Unfortunately, at present time, there are neither vaccine and nor an approved COVID-19 specific drug against SARS-CoV-2. One of the remarkable pathogenesis mechanistic step of this virus is taking possession of the affinity to angiotensin-converting enzyme 2 (ACE2). This mini-review summarizes the origin and molecular identification of the virus as well as the host immune responses. SARS-CoV-2 , COVID-19, ACE2, origin


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Angélica Arcanjo ◽  
Jorgete Logullo ◽  
Camilla Cristie Barreto Menezes ◽  
Thais Chrispim de Souza Carvalho Giangiarulo ◽  
Mirella Carneiro dos Reis ◽  
...  

AbstractThe novel coronavirus SARS-CoV-2 causes COVID-19, a highly pathogenic viral infection threatening millions. The majority of the individuals infected are asymptomatic or mildly symptomatic showing typical clinical signs of common cold. However, approximately 20% of the patients can progress to acute respiratory distress syndrome (ARDS), evolving to death in about 5% of cases. Recently, angiotensin-converting enzyme 2 (ACE2) has been shown to be a functional receptor for virus entry into host target cells. The upregulation of ACE2 in patients with comorbidities may represent a propensity for increased viral load and spreading of infection to extrapulmonary tissues. This systemic infection is associated with higher neutrophil to lymphocyte ratio in infected tissues and high levels of pro-inflammatory cytokines leading to an extensive microthrombus formation with multiorgan failure. Herein we investigated whether SARS-CoV-2 can stimulate extracellular neutrophils traps (NETs) in a process called NETosis. We demonstrated for the first time that SARS-CoV-2 in fact is able to activate NETosis in human neutrophils. Our findings indicated that this process is associated with increased levels of intracellular Reactive Oxygen Species (ROS) in neutrophils. The ROS-NET pathway plays a role in thrombosis formation and our study suggest the importance of this target for therapy approaches against disease.


2020 ◽  
Author(s):  
Angélica Arcanjo ◽  
Jorgete Logullo ◽  
Camilla Cristie Barreto Menezes ◽  
Thais Chrispim de Souza Cravalho Giangiarulo ◽  
Shana Priscila Coutinho Barroso ◽  
...  

Abstract The novel coronavirus SARS-CoV2 causes COVID-19, a highly pathogenic viral infection threatening millions. The majority of those infected are asymptomatic or mildly symptomatic showing typical clinical signs of common cold. However approximately 20% of the patients can progress to acute respiratory distress syndrome (ARDS) and eventually death in about 5% of cases. Recently, angiotensin-converting enzyme 2 (ACE2) has been shown to be a functional receptor for virus entry into host target cells. The upregulation of ACE2 in patients with comorbidities may represent a propensity for increased viral load and spreading of infection to extrapulmonary tissues. This systemic infection is associated with higher neutrophil to lymphocyte ratio in infected tissues and high levels of pro-inflammatory cytokines leading to an extensive microthrombus formation with multiorgan failure. Herein we investigated whether SARS-CoV2 can stimulate extracellular neutrophils traps (NETs) in a process called NETosis. We demonstrated for the first time that SARS-CoV2 in fact is able to activate NETosis in human neutrophils. Our findings indicated that this process is associated with increased levels of intracellular Reactive Oxygen Species (ROS) in neutrophils. The ROS-NET pathway plays a role in thrombosis formation and our study suggest the importance of this target for therapy approaches against disease.


Author(s):  
Lara Bittmann

On December 31, 2019, WHO was informed of cases of pneumonia of unknown cause in Wuhan City, China. A novel coronavirus was identified as the cause by Chinese authorities on January 7, 2020 and was provisionally named "2019-nCoV". This new Coronavirus causes a clinical picture which has received now the name COVID-19. The virus has spread subsequently worldwide and was explained on the 11th of March, 2020 by the World Health Organization to the pandemic.


2020 ◽  
Vol 16 (1) ◽  
pp. 6-11
Author(s):  
Ashok Arasu ◽  
Pavithra Balakrishnan ◽  
Thirunavukkarasu Velusamy ◽  
Thiagarajan Ramesh

The 2019 novel coronavirus (2019-nCoV) infection is an emerging pandemic that poses a severe threat to global public health. This pandemic started from the Wuhan City of Hubei Province in China, and is speculated to have originated from bats and spread among humans with an unknown intermediate transmitter. The virus binds to angiotensin-converting enzyme 2 (ACE2), which is abundantly expressed on various human cells, including lung epithelial and intestinal cells, thereby entering into these cells and causing infection. It is transmitted to other humans through airborne droplets from infected patients. Presently there are no specific treatments or vaccines that are available to curtail the spread of this disease. There are few indirect reports that explain the potential importance of the mandated BCG vaccine as a protective factor against COVID-19. There is a speculation that a live attenuated vaccine (BCG vaccine) can be beneficial against COVID-19 to develop the initial immune response, and can also spread in the community, thereby boosting herd immunity to fight against COVID-19. This review summarizes the conclusions of various reports on the BCG vaccine, and is an attempt to establish BCG-vaccination mediated herd immunity as an effective instant intermediate approach in curbing COVID-19 spread in highly populous countries.


Author(s):  
Bipin Singh

: The recent outbreak of novel coronavirus (SARS-CoV-2 or 2019-nCoV) and its worldwide spread is posing one of the major threats to human health and the world economy. It has been suggested that SARS-CoV-2 is similar to SARSCoV based on the comparison of the genome sequence. Despite the genomic similarity between SARS-CoV-2 and SARSCoV, the spike glycoprotein and receptor binding domain in SARS-CoV-2 shows the considerable difference compared to SARS-CoV, due to the presence of several point mutations. The analysis of receptor binding domain (RBD) from recently published 3D structures of spike glycoprotein of SARS-CoV-2 (Yan, R., et al. (2020); Wrapp, D., et al. (2020); Walls, A. C., et al. (2020)) highlights the contribution of a few key point mutations in RBD of spike glycoprotein and molecular basis of its efficient binding with human angiotensin-converting enzyme 2 (ACE2).


2020 ◽  
Vol 10 (01) ◽  
pp. e137-e140
Author(s):  
Mosaad Abdel-Aziz ◽  
Nada M. Abdel-Aziz ◽  
Dina M. Abdel-Aziz ◽  
Noha Azab

AbstractThe clinical manifestations of novel coronavirus disease 2019 (COVID-19) vary from mild flu-like symptoms to severe fatal pneumonia. However, children with COVID-19 may be asymptomatic or may have mild clinical symptoms. The aim of this study was to investigate clinical features of pediatric COVID-19 and to search for the factors that may mitigate the disease course. We reviewed the literature to realize the clinical features, laboratory, and radiographic data that may be diagnostic for COVID-19 among children. Also, we studied the factors that may affect the clinical course of the disease. Fever, dry cough, and fatigue are the main symptoms of pediatric COVID-19, sometimes flu-like symptoms and/or gastrointestinal symptoms may be present. Although some infected children may be asymptomatic, a recent unusual hyperinflammatory reaction with overlapping features of Kawasaki's disease and toxic shock syndrome in pediatric COVID-19 has been occasionally reported. Severe acute respiratory syndrome-coronvirus-2 (SARS-CoV-2) nucleic acid testing is the corner-stone method for the diagnosis of COVID-19. Lymphocyte count and other inflammatory markers are not essentially diagnostic; however, chest computed tomography is highly specific. Factors that may mitigate the severity of pediatric COVID-19 are home confinement with limited children activity, trained immunity caused by compulsory vaccination, the response of the angiotensin-converting enzyme 2 receptors in children is not the same as in adults, and that children are less likely to have comorbidities. As infected children may be asymptomatic or may have only mild respiratory and/or gastrointestinal symptoms that might be missed, all children for families who have a member diagnosed with COVID-19 should be investigated.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Erik J. Boll ◽  
Jorge Ayala-Lujan ◽  
Rose L. Szabady ◽  
Christopher Louissaint ◽  
Rachel Z. Smith ◽  
...  

ABSTRACTEnteroaggregativeEscherichia coli(EAEC) causes diarrhea and intestinal inflammation worldwide. EAEC strains are characterized by the presence of aggregative adherence fimbriae (AAF), which play a key role in pathogenesis by mediating attachment to the intestinal mucosa and by triggering host inflammatory responses. Here, we identify the epithelial transmembrane mucin MUC1 as an intestinal host cell receptor for EAEC, demonstrating that AAF-mediated interactions between EAEC and MUC1 facilitate enhanced bacterial adhesion. We further demonstrate that EAEC infection also causes elevated expression of MUC1 in inflamed human intestinal tissues. Moreover, we find that MUC1 facilitates AAF-dependent migration of neutrophils across the epithelium in response to EAEC infection. Thus, we show for the first time a proinflammatory role for MUC1 in the host response to an intestinal pathogen.IMPORTANCEEAEC is a clinically important intestinal pathogen that triggers intestinal inflammation and diarrheal illness via mechanisms that are not yet fully understood. Our findings provide new insight into how EAEC triggers host inflammation and underscores the pivotal role of AAFs—the principal adhesins of EAEC—in driving EAEC-associated disease. Most importantly, our findings add a new dimension to the signaling properties of the transmembrane mucin MUC1. Mostly studied for its role in various forms of cancer, MUC1 is widely regarded as playing an anti-inflammatory role in response to infection with bacterial pathogens in various tissues. However, the role of MUC1 during intestinal infections has not been previously explored, and our results describe the first report of MUC1 as a proinflammatory factor following intestinal infection.


2020 ◽  
Author(s):  
Xingyi Guo ◽  
Zhishan Chen ◽  
Yumin Xia ◽  
Weiqiang Lin ◽  
Hongzhi Li

Abstract Background: The outbreak of coronavirus disease (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), through its surface spike glycoprotein (S-protein) recognition on the receptor Angiotensin-converting enzyme 2 (ACE2) in humans. However, it remains unclear how genetic variations in ACE2 may affect its function and structure, and consequently alter the recognition by SARS-CoV-2. Methods: We have systemically characterized missense variants in the gene ACE2 using data from the Genome Aggregation Database (gnomAD; N = 141,456). To investigate the putative deleterious role of missense variants, six existing functional prediction tools were applied to evaluate their impact. We further analyzed the structural flexibility of ACE2 and its protein-protein interface with the S-protein of SARS-CoV-2 using our developed Legion Interfaces Analysis (LiAn) program.Results: Here, we characterized a total of 12 ACE2 putative deleterious missense variants. Of those 12 variants, we further showed that p.His378Arg could directly weaken the binding of catalytic metal atom to decrease ACE2 activity and p.Ser19Pro could distort the most important helix to the S-protein. Another seven missense variants may affect secondary structures (i.e. p.Gly211Arg; p.Asp206Gly; p.Arg219Cys; p.Arg219His, p.Lys341Arg, p.Ile468Val, and p.Ser547Cys), whereas p.Ile468Val with AF = 0.01 is only present in Asian.Conclusions: We provide strong evidence of putative deleterious missense variants in ACE2 that are present in specific populations, which could disrupt the function and structure of ACE2. These findings provide novel insight into the genetic variation in ACE2 which may affect the SARS-CoV-2 recognition and infection, and COVID-19 susceptibility and treatment.


2018 ◽  
Vol 3 (2) ◽  
pp. 101-106 ◽  
Author(s):  
Claus Petersen ◽  
Omid Madadi-Sanjani

AbstractBiliary atresia (BA) is still an enigmatic disease of unknown etiology and cryptic pathomechanism. Despite the fact that BA is rated among rare diseases, it represents the most frequent indication for pediatric liver transplantation. Although every effort is made to elucidate the origin of the ongoing deterioration of liver function, no breakthrough has so far been achieved, which switches the surgical but symptomatic therapy to a cause-oriented approach. The nowadays leading hypothesis focuses on hepatotropic virus as a triggering agent for an autoimmunological self-limiting inflammatory process along the entire biliary tree. The present review highlights the current state of research on the factor “viruses in biliary atresia” in both patients undergoing the Kasai procedure and the virus-induced BA mouse model.


Sign in / Sign up

Export Citation Format

Share Document