scholarly journals IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules

2021 ◽  
Vol 11 (5) ◽  
pp. 243-262
Author(s):  
Chrysoula-Evangelia Karachaliou ◽  
Vyronia Vassilakopoulou ◽  
Evangelia Livaniou
2014 ◽  
Vol 490-491 ◽  
pp. 1602-1606 ◽  
Author(s):  
Jana Drbohlavová ◽  
Jana Chomoucka ◽  
Radim Hrdý ◽  
Vojtech Svatos ◽  
Jaromir Hubalek

The fabrication of self-ordered semiconductor (TiO2) and noble metal (Au) QDs arrays was successfully achieved by advanced nonlithographic template based method, namely using nanoporous alumina template. The emphasis was placed on the successful preparation of QDs arrays with the desired size, homogeneous distribution and optical (especially fluorescence) properties. Titania and gold QDs characterization by SEM, EDX and fluorescence spectroscopy was performed in order to verify their surface topography, chemical composition and emission properties in UV/VIS range of spectra, respectively. The surface biofunctionalization of QDs was realized via simple physical adsorption of glutathione tripeptide, which makes these arrays suitable for potential biosensing application, mainly in optical and electrochemical detection of biomoleculesin vitro.


Author(s):  
Lina S. Franco ◽  
Vladimiro Mujica ◽  
Joseph N. Blattman ◽  
Antonio A. García

Although there are extensive literature reports on the use of gold nanoparticle (AuNP) based homogeneous assays for detection of biomolecules, very few experimental description and procedures involving their preparation are described. In this study, AuNPs conjugated to Bovine Serum Albumin or Envelope protein from Dengue II were developed as a homogeneous immunoassay for antibody detection. We report here optimization of key parameters to prepare an immunoassay like conjugation protein concentration, centrifugation time, electrolyte addition and assay temperature.  We determined that saturating protein concentrations improved AuNPs surface coverage and uniformity of the assay and addition of sodium chloride improved sensitivity of the antibody detection method and assay stability.  Furthermore, we showed that dynamic light scattering can be used to monitor changes in gold nanoparticles in the preparation and detection steps. Additionally, numerical simulations of the plasmonic optical response of AuNPs were carried out to scan for size-dependent response of the AuNPs. The AuNPs homogeneous immunoassay developed was further used in the detection of antibodies in vitro to detect Dengue virus infection.


Author(s):  
Kilho Eom ◽  
Tae Yun Kwon ◽  
Jinsung Park ◽  
Sungsoo Na ◽  
Dae Sung Yoon ◽  
...  

Nanomechanical microcantilevers have enabled the sensitive label-free detection of chemical and/or biological molecules. In recent years, resonating microcantilevers have achieved the unprecedented sensitivity in detecting molecules. In this article, we review our current works on the label-free detection of biomolecules based on resonating microcantilevers. Our piezoelectric thick film microcantilevers exhibit the relatively high quality factor in a viscous liquid, indicating the potential of our cantilever to in situ biosensor applications for real-time detection of biomolecular interactions. It is shown that our microcantilevers allow the noise-free real-time monitoring of biomolecular recognitions, providing the insight into kinetics of biomolecular recognitions.


2010 ◽  
Vol 1 ◽  
pp. 142-154 ◽  
Author(s):  
Huilin Shao ◽  
Tae-Jong Yoon ◽  
Monty Liong ◽  
Ralph Weissleder ◽  
Hakho Lee

Rapid and accurate measurements of protein biomarkers, pathogens and cells in biological samples could provide useful information for early disease diagnosis, treatment monitoring, and design of personalized medicine. In general, biological samples have only negligible magnetic susceptibility. Thus, using magnetic nanoparticles for biosensing not only enhances sensitivity but also effectively reduces sample preparation needs. This review focuses on the use of magnetic nanoparticles for in vitro detection of biomolecules and cells based on magnetic resonance effects. This detection platform, termed diagnostic magnetic resonance (DMR), exploits magnetic nanoparticles as proximity sensors, which modulate the spin–spin relaxation time of water molecules surrounding molecularly-targeted nanoparticles. By developing more effective magnetic nanoparticle biosensors, DMR detection limits for various target moieties have been considerably improved over the last few years. Already, a library of magnetic nanoparticles has been developed, in which a wide range of targets, including DNA/mRNA, proteins, small molecules/drugs, bacteria, and tumor cells, have been quantified. More recently, the capabilities of DMR technology have been further advanced with new developments such as miniaturized nuclear magnetic resonance detectors, better magnetic nanoparticles and novel conjugational methods. These developments have enabled parallel and sensitive measurements to be made from small volume samples. Thus, the DMR technology is a highly attractive platform for portable, low-cost, and efficient biomolecular detection within a biomedical setting.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Chan Cao ◽  
Nuria Cirauqui ◽  
Maria Jose Marcaida ◽  
Elena Buglakova ◽  
Alice Duperrex ◽  
...  

Abstract Nanopore sensing is a powerful single-molecule approach for the detection of biomolecules. Recent studies have demonstrated that aerolysin is a promising candidate to improve the accuracy of DNA sequencing and to develop novel single-molecule proteomic strategies. However, the structure–function relationship between the aerolysin nanopore and its molecular sensing properties remains insufficiently explored. Herein, a set of mutated pores were rationally designed and evaluated in silico by molecular simulations and in vitro by single-channel recording and molecular translocation experiments to study the pore structural variation, ion selectivity, ionic conductance and capabilities for sensing several biomolecules. Our results show that the ion selectivity and sensing ability of aerolysin are mostly controlled by electrostatics and the narrow diameter of the double β-barrel cap. By engineering single-site mutants, a more accurate molecular detection of nucleic acids and peptides has been achieved. These findings open avenues for developing aerolysin nanopores into powerful sensing devices.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
John J. Wolosewick ◽  
John H. D. Bryan

Early in spermiogenesis the manchette is rapidly assembled in a distal direction from the nuclear-ring-densities. The association of vesicles of smooth endoplasmic reticulum (SER) and the manchette microtubules (MTS) has been reported. In the mouse, osmophilic densities at the distal ends of the manchette are the organizing centers (MTOCS), and are associated with the SER. Rapid MT assembly and the lack of rough ER suggests that there is an existing pool of MT protein. Colcemid potentiates the reaction of vinblastine with tubulin and was used in this investigation to detect this protein.


Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


Author(s):  
M. Kraemer ◽  
J. Foucrier ◽  
J. Vassy ◽  
M.T. Chalumeau

Some authors using immunofluorescent techniques had already suggested that some hepatocytes are able to synthetize several plasma proteins. In vitro studies on normal cells or on cells issued of murine hepatomas raise the same conclusion. These works could be indications of an hepatocyte functionnal non-specialization, meanwhile the authors never give direct topographic proofs suitable with this hypothesis.The use of immunoenzymatic techniques after obtention of monospecific antisera had seemed to us useful to bring forward a better knowledge of this problem. We have studied three carrier proteins (transferrin = Tf, hemopexin = Hx, albumin = Alb) operating at different levels in iron metabolism by demonstrating and localizing the adult rat hepatocytes involved in their synthesis.Immunological, histological and ultrastructural methods have been described in a previous work.


Author(s):  
Ann Chidester Van Orden ◽  
John L. Chidester ◽  
Anna C. Fraker ◽  
Pei Sung

The influence of small variations in the composition on the corrosion behavior of Co-Cr-Mo alloys has been studied using scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), and electrochemical measurements. SEM and EDX data were correlated with data from in vitro corrosion measurements involving repassivation and also potentiostatic anodic polarization measurements. Specimens studied included the four alloys shown in Table 1. Corrosion tests were conducted in Hanks' physiological saline solution which has a pH of 7.4 and was held at a temperature of 37°C. Specimens were mechanically polished to a surface finish with 0.05 µm A1203, then exposed to the solution and anodically polarized at a rate of 0.006 v/min. All voltages were measured vs. the saturated calomel electrode (s.c.e.).. Specimens had breakdown potentials near 0.47V vs. s.c.e.


Sign in / Sign up

Export Citation Format

Share Document