scholarly journals Fractals analysis and control for a kind of three-species ecosystem with symmetrical coupled predatory behavior

2020 ◽  
Vol 49 (4) ◽  
pp. 530-540
Author(s):  
Da Wang ◽  
Tianwen Sun ◽  
Yi Zhang

The Lotka-Volterra model plays an important role in the research area of population biology. This work presents the analysis of dynamical behaviours of a kind of three species GLV systemfrom the viewpoint of fractals. The definition of Julia set which describes the initial distribution of the three species’ densities is introduced. Then a gradient control method which contains both giant parameter and state feedback is applied to realize the control of Julia set. Coupling terms are designed to realize the synchronization of two Julia sets. Numerical examples are included to verify the conclusions

Author(s):  
Harry A. Atwater ◽  
C.M. Yang ◽  
K.V. Shcheglov

Studies of the initial stages of nucleation of silicon and germanium have yielded insights that point the way to achievement of engineering control over crystal size evolution at the nanometer scale. In addition to their importance in understanding fundamental issues in nucleation, these studies are relevant to efforts to (i) control the size distributions of silicon and germanium “quantum dots𠇍, which will in turn enable control of the optical properties of these materials, (ii) and control the kinetics of crystallization of amorphous silicon and germanium films on amorphous insulating substrates so as to, e.g., produce crystalline grains of essentially arbitrary size.Ge quantum dot nanocrystals with average sizes between 2 nm and 9 nm were formed by room temperature ion implantation into SiO2, followed by precipitation during thermal anneals at temperatures between 30°C and 1200°C[1]. Surprisingly, it was found that Ge nanocrystal nucleation occurs at room temperature as shown in Fig. 1, and that subsequent microstructural evolution occurred via coarsening of the initial distribution.


JEMAP ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Albertus Reynaldo Kurniawan ◽  
Bayu Prestianto

Quality control becomes an important key for companies in suppressing the number of defective produced products. Six Sigma is a quality control method that aims to minimize defective products to the lowest point or achieve operational performance with a sigma value of 6 with only yielding 3.4 defective products of 1 million product. Stages of Six Sigma method starts from the DMAIC (Define, Measure, Analyze, Improve and Control) stages that help the company in improving quality and continuous improvement. Based on the results of research on baby clothes products, data in March 2018 the percentage of defective products produced reached 1.4% exceeding 1% tolerance limit, with a Sigma value of 4.14 meaning a possible defect product of 4033.39 opportunities per million products. In the pareto diagram there were 5 types of CTQ (Critical to Quality) such as oblique obras, blobor screen printing, there is a fabric / head cloth code on the final product, hollow fabric / thin fabric fiber, and dirty cloth. The factors caused quality problems such as Manpower, Materials, Environtment, and Machine. Suggestion for consideration of company improvement was continuous improvement on every existing quality problem like in Manpower factor namely improving comprehension, awareness of employees in producing quality product and improve employee's accuracy, Strength Quality Control and give break time. Materials by making the method of cutting the fabric head, the Machine by scheduling machine maintenance and the provision of needle containers at each employees desk sewing and better environtment by installing exhaust fan and renovating the production room.


2016 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Ahmed S. Khusheef

 A quadrotor is a four-rotor aircraft capable of vertical take-off and landing, hovering, forward flight, and having great maneuverability. Its platform can be made in a small size make it convenient for indoor applications as well as for outdoor uses. In model there are four input forces that are essentially the thrust provided by each propeller attached to each motor with a fixed angle. The quadrotor is basically considered an unstable system because of the aerodynamic effects; consequently, a close-loop control system is required to achieve stability and autonomy. Such system must enable the quadrotor to reach the desired attitude as fast as possible without any steady state error. In this paper, an optimal controller is designed based on a Proportional Integral Derivative (PID) control method to obtain stability in flying the quadrotor. The dynamic model of this vehicle will be also explained by using Euler-Newton method. The mechanical design was performed along with the design of the controlling algorithm. Matlab Simulink was used to test and analyze the performance of the proposed control strategy. The experimental results on the quadrotor demonstrated the effectiveness of the methodology used.


2020 ◽  
Author(s):  
Isra Revenia

This article is made to know the destinantion and the administrasi functions of the school in order to assist the leader of an organazation in making decisions and doing the right thing, recording of such statements in addition to the information needs also pertains to the function of accountabilitty and control functions. Administrative administration is the activity of recording for everything that happens in the organization to be used as information for leaders. While the definition of administration is all processing activities that start from collecting (receiving), recording, processing, duplicating, minimizing and storing all the information of correspondence needed by the organization. Administration is as an activity to determine everything that happens in the organization, to be used as material for information by the leadership, which includes all activities ranging from manufacturing, managing, structuring to all the preparation of information needed by the organization.


1994 ◽  
Vol 30 (1) ◽  
pp. 167-175
Author(s):  
Alan H. Vicory ◽  
Peter A. Tennant

With the attainment of secondary treatment by virtually all municipal discharges in the United States, control of water pollution from combined sewer overflows (CSOs) has assumed a high priority. Accordingly, a national strategy was issued in 1989 which, in 1993, was expanded into a national policy on CSO control. The national policy establishes as an objective the attainment of receiving water quality standards, rather than a design storm/treatment technology based approach. A significant percentage of the CSOs in the U.S. are located along the Ohio River. The states along the Ohio have decided to coordinate their CSO control efforts through the Ohio River Valley Water Sanitation Commission (ORSANCO). With the Commission assigned the responsibility of developing a monitoring approach which would allow the definition of CSO impacts on the Ohio, research by the Commission found that very little information existed on the monitoring and assessment of large rivers for the determination of CSO impacts. It was therefore necessary to develop a strategy for coordinated efforts by the states, the CSO dischargers, and ORSANCO to identify and apply appropriate monitoring approaches. A workshop was held in June 1993 to receive input from a variety of experts. Taking into account this input, a strategy has been developed which sets forth certain approaches and concepts to be considered in assessing CSO impacts. In addition, the strategy calls for frequent sharing of findings in order that the data collection efforts by the several agencies can be mutually supportive and lead to technically sound answers regarding CSO impacts and control needs.


1996 ◽  
Vol 118 (3) ◽  
pp. 482-488 ◽  
Author(s):  
Sergio Bittanti ◽  
Fabrizio Lorito ◽  
Silvia Strada

In this paper, Linear Quadratic (LQ) optimal control concepts are applied for the active control of vibrations in helicopters. The study is based on an identified dynamic model of the rotor. The vibration effect is captured by suitably augmenting the state vector of the rotor model. Then, Kalman filtering concepts can be used to obtain a real-time estimate of the vibration, which is then fed back to form a suitable compensation signal. This design rationale is derived here starting from a rigorous problem position in an optimal control context. Among other things, this calls for a suitable definition of the performance index, of nonstandard type. The application of these ideas to a test helicopter, by means of computer simulations, shows good performances both in terms of disturbance rejection effectiveness and control effort limitation. The performance of the obtained controller is compared with the one achievable by the so called Higher Harmonic Control (HHC) approach, well known within the helicopter community.


2013 ◽  
Vol 103 (6) ◽  
pp. 538-544 ◽  
Author(s):  
Glenna M. Malcolm ◽  
Gretchen A. Kuldau ◽  
Beth K. Gugino ◽  
María del Mar Jiménez-Gasco

Much of the current knowledge on population biology and ecology of soilborne fungal pathogens has been derived from research based on populations recovered from plants displaying disease symptoms or soil associated with symptomatic plants. Many soilborne fungal pathogens are known to cause disease on a large number of crop plants, including a variety of important agronomical, horticultural, ornamental, and forest plants species. For instance, the fungus Verticillium dahliae causes disease on >400 host plants. From a phytopathological perspective, plants on which disease symptoms have not been yet observed are considered to be nonhosts for V. dahliae. This term may be misleading because it does not provide information regarding the nature of the plant–fungus association; that is, a nonhost plant may harbor the fungus as an endophyte. Yet, there are numerous instances in the literature where V. dahliae has been isolated from asymptomatic plants; thus, these plants should be considered hosts. In this article, we synthesize scattered research that indicates that V. dahliae, aside from being a successful and significant vascular plant pathogen, may have a cryptic biology on numerous asymptomatic plants as an endophyte. Thus, we suggest here that these endophytic associations among V. dahliae and asymptomatic plants are not unusual relationships in nature. We propose to embrace the broader ecology of many fungi by differentiating between “symptomatic hosts” as those plants in which the infection and colonization by a fungus results in disease, and “asymptomatic hosts” as those plants that harbor the fungus endophytically and are different than true nonhosts that should be used for plant species that do not interact with the given fungus. In fact, if we broaden our definition of “host plant” to include asymptomatic plants that harbor the fungus as an endophyte, it is likely that the host ranges for some soilborne fungal pathogens are much larger than previously envisioned. By ignoring the potential for soilborne fungal pathogens to display endophytic relationships, we leave gaps in our knowledge about the population biology and ecology, persistence, and spread of these fungi in agroecosystems.


2014 ◽  
Vol 644-650 ◽  
pp. 879-883
Author(s):  
Jing Jing Yu

In various forms of movement of finger rehabilitation training, Continuous Passive Motion (CPM) of single degree of freedom (1 DOF) has outstanding application value. Taking classic flexion and extension movement for instance, this study collected the joint angle data of finger flexion and extension motion by experiments and confirmed that the joint motion of finger are not independent of each other but there is certain rule. This paper studies the finger joint movement rule from qualitative and quantitative aspects, and the conclusion can guide the design of the mechanism and control method of finger rehabilitation training robot.


Systems ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 33
Author(s):  
Olena Klymenko ◽  
Lise Lillebrygfjeld Halse ◽  
Bjørn Jæger

Sustainability accounting is an emerging research area receiving growing awareness. This study examines the role of digital technology in manufacturing companies’ sustainability accounting. To guide the research, we use a triple layered business model canvas, which supports the accounting of a manufacturer’s performance for the economic, environmental, and social aspects of sustainability. We present an explorative case study of four Norwegian manufacturing companies representing different industries. The findings from the study indicate that while accounting for economic values is well taken care of, companies do not perform comprehensive environmental and social accounting. Furthermore, we observed a shift from a focus on sustainability issues related to the internal manufacturing process to a focus on sustainability issues for the life cycle of the product. Even though the manufacturers are at the forefront with regard to automation and control of production, with extensive use of robots giving a large amount of data, these data are not utilized towards sustainability accounting, showing that sustainability and digitalization are seen as two separate phenomena. This study sheds light on how digital data available from applied Industry 4.0 technologies could enhance sustainability accounting with limited efforts, linking sustainability and digitalization. The results provide insights for manufacturers and researchers in moving towards more sustainable operations and products.


Author(s):  
Mathias Stefan Roeser ◽  
Nicolas Fezans

AbstractA flight test campaign for system identification is a costly and time-consuming task. Models derived from wind tunnel experiments and CFD calculations must be validated and/or updated with flight data to match the real aircraft stability and control characteristics. Classical maneuvers for system identification are mostly one-surface-at-a-time inputs and need to be performed several times at each flight condition. Various methods for defining very rich multi-axis maneuvers, for instance based on multisine/sum of sines signals, already exist. A new design method based on the wavelet transform allowing the definition of multi-axis inputs in the time-frequency domain has been developed. The compact representation chosen allows the user to define fairly complex maneuvers with very few parameters. This method is demonstrated using simulated flight test data from a high-quality Airbus A320 dynamic model. System identification is then performed with this data, and the results show that aerodynamic parameters can still be accurately estimated from these fairly simple multi-axis maneuvers.


Sign in / Sign up

Export Citation Format

Share Document