scholarly journals Effect of Sintering Temperature on Property of Low-Density Ceramic Proppant Adding Coal Gangue

2019 ◽  
Vol 26 (1) ◽  
pp. 94-98
Author(s):  
Jianying HAO ◽  
Huilan HAO ◽  
Yunfeng GAO ◽  
Xianjun LI ◽  
Mei QIN ◽  
...  

Calcined flint clay (45.6 wt.% Al2O3) and solid waste coal gangue were used to prepare low-density ceramic proppant by solid state sintering method. The density and breakage ratio of the ceramic proppant were systematically investigated as a function of sintering temperature. The morphology and phase composition of the ceramic proppant were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the ceramic proppant is composed of rod-like mullite and granular cristobalite. Bulk density and apparent density of the proppant first rise and then slightly decrease with increasing the sintering temperature, while breakage ratios under 35 MPa and 52 MPa pressure gradually decrease and then increase. As the sintering temperature increases up to 1400 °C, the ceramic proppant shows denser microstructure. The proppant sintered at 1400 °C have the best performance with 1.27 g/cm3 of bulk density, 2.79 g/cm3 of apparent density, 3.27 % of breakage ratio under 35 MPa closed pressure and 8.36 % of breakage ratio under 52 MPa closed pressure, which conform to the requirement of low-density ceramic proppant. The addition of solid waste can greatly reduce the preparation cost of the ceramic proppant.

2011 ◽  
Vol 335-336 ◽  
pp. 699-703
Author(s):  
Hui Hui Tan ◽  
Zhu Xing Tang ◽  
Xia Zhao ◽  
He Zhang

This paper introduces Si2ON2-SiC ceramic fabricated by pressureless sintering method and studies the effect of additives, nitriding temperatures on bulk density, porosity, phase composition and microstructure. It is discovered that additives MgO, CeO2 can increase the densities of Si2ON2-SiC ceramic apparently, and MgO additive has a better effect than CeO2. Nitriding temperature also is an important factor. The bulk density of the specimen with MgO additive reaches maximum at 1.91 g/cm3 when sintered at 1450 °C, and the bulk density of specimen with CeO2 additive is 1.86 g/cm3 at the same condition while the bulk density of the specimen without additive is only 1.75 g/cSuperscript textm3. The X-ray diffraction and scanning electron microscopy of the specimens show that the amount of Si2ON2 increase with the sintering temperature increase. But when the temperature is higher than 1500 °C the Si2ON2 grains will decompose into Si3N4, and Si2ON2 will vanish at 1550 °C


Author(s):  
Haiquan Wang ◽  
Shixuan Li ◽  
Kangguo Wang ◽  
Xiuli Chen ◽  
Huanfu Zhou

AbstractThis study investigates the bulk density, sintering behaviour, and microwave dielectric properties of the MgO-2B2O3 series ceramics synthesised by solid-state reaction. According to the X-ray diffraction and microstructural analyses, the as-prepared MgO-2B2O3 ceramics possess a single-phase structure with a rod-like morphology. The effects of different quantities of H3BO3 and BaCu(B2O5) (BCB) on the bulk density, sintering behaviour, and microwave dielectric properties of the MgO-2B2O3 ceramics were investigated. Accordingly, the optimal sintering temperature was obtained by adding 30 wt% H3BO3 and 8 wt% BCB. We also reduced the sintering temperature to 825 °C. Furthermore, the addition of 40 wt% H3BO3 and 4 wt% BCB increased the quality factor, permittivity, and temperature coefficient of resonance frequency of MgO-2B2O3 to 44,306 GHz (at 15 GHz), 5.1, and −32 ppm/°C, respectively. These properties make MgO-2B2O3 a viable low-temperature co-fired ceramic with broad applications in microwave dielectrics.


2011 ◽  
Vol 04 (03) ◽  
pp. 225-229 ◽  
Author(s):  
WENJUAN WU ◽  
DINGQUAN XIAO ◽  
JIAGANG WU ◽  
JING LI ◽  
JIANGUO ZHU

( K 0.48 Na 0.52) NbO 3-x% Co 2 O 3 (x = 0, 0.03 and 0.05) (KNN-x% Co2O3 ) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method. An orthorhombic phase was observed for all KNN-x% Co2O3 ceramics at room temperature, and two phase transitions were confirmed by the high temperature X-ray diffraction and the temperature dependence of the dielectric constant. The Co2O3 greatly improves the density and decreases the sintering temperature of KNN ceramics. The KNN-0.05 mol%Co2O3 ceramic exhibits good properties (d33 = 120 pC/N , k p = 0.41, Q m = 213 and T c = 407°C) and a good age stability. The multiferroic behavior was also observed at room temperature for the KNN-0.05 mol%Co2O3 ceramic, as confirmed by P–E loops and magnetic behavior.


2012 ◽  
Vol 557-559 ◽  
pp. 839-844 ◽  
Author(s):  
Gao Xiang Du ◽  
Ran Fang Zuo ◽  
Wei Juan Guo ◽  
Jing Hui Liao

Based on the background that large amount of iron ore tailings are stockpiled in China, the utilization of iron ore tailings to prepare sintering brick was studied. The main objective of this paper was to investigate the influence of sintering temperature on sintering bricks from iron ore tailings, in the presence of clay, coal refuses and bentonite. Sintering bricks were prepared at different temperature with 40 wt% iron ore tailings. Drying was investigated as well as the loss on ignition, bulk density and compressive strength of the specimens. Their mechanical and microstructure properties were also investigated by radioactivity, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that compressive strengths of the specimens produced were higher than that required by the standards MU20 of GB5101-2003, up to 128.0Mpa at 1100°C corresponding to its higher bulk density completely.


2010 ◽  
Vol 654-656 ◽  
pp. 2158-2161 ◽  
Author(s):  
Eri Miura-Fujiwara ◽  
Takeshi Teramoto ◽  
Hisashi Sato ◽  
Equo Kobayashi ◽  
Yoshimi Watanabe

This study aims at producing porous Ti filled with biodegradable materials for biomedical implants by means of spark plasma sintering method (SPS). To improve bone fixation and to obtain appropriate Young’s modulus as a medical implant material, we applied -tri calcium phosphate (-TCP) to the Ti-based composite. Ti/-TCP powder mixtures were sintered by SPS under applied stress of 45MPa with various temperatures and holding time. Vickers hardness (Hv) of obtained composite increased with increasing the holding time up to 10 min, and saturated hardness was approximately 750 Hv, which is extremely higher than that of bulk Ti. Hardness also increased as sintering temperature increased up to 1473 K. From the results of microstructure observations by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDXS), O- and P- containing Ti surrounded around Ti particle, and O diffused into Ti particle to a certain extent. X-ray diffraction results indicated several kinds of Ti-O and/or Ti-P formed in the specimen. Results indicated that it is the brittle phases formed during sintering that increased the hardness.


2009 ◽  
Vol 23 (17) ◽  
pp. 3637-3642 ◽  
Author(s):  
K. SADHANA ◽  
R. S. SHINDE ◽  
S. R. MURTHY

The aim of present research is to study the influence of sintering temperature on the preparation of nanocrystalline Yttrium Iron garnet (YIG) with improved magnetic properties. The nanocrystalline YIG powders were synthesized using Microwave-Hydrothermal (M-H) method. The synthesized powders were characterized using X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). The powders were sintered at various temperatures using microwave sintering method. The sintered samples were characterized using XRD. The complex permeability, dielectric constant and loss tangent of sintered YIG ceramic were also measured and discussed in this paper


2014 ◽  
Vol 602-603 ◽  
pp. 84-87
Author(s):  
Xiao Wei Cao ◽  
Yan Gai Liu ◽  
Zhao Hui Huang ◽  
Ming Hao Fang ◽  
Rui Long Wen

The ceramic microsphere was prepared by the ball milling and sintering using Dolomite and Coal Gangue as raw materials. The effects of ratio of raw materials, sintering temperature on bulk density and apparent density, phase constitution, microstructure of the ceramic microspheres were studied. The results indicated that the ratio of raw materials, sintering temperature has some effects on the bulk density and apparent density, phase constitution, microstructure of the ceramic microspheres. The bulk density and apparent density of the ceramic microspheres increased with sintering temperature rising. With the increasing of the ratio of dolomite, the bulk density of ceramic microspheres improved firstly and then dropped slightly, the apparent density of ceramic microspheres increased constantly. The bulk densities of the prepared ceramic microspheres were in the range of 0.570 g/cm3to 0.754 g/cm3, the apparent densities of the prepared ceramic microspheres were between 2.419 g/cm3and 2.661 g/cm3.


2012 ◽  
Vol 532-533 ◽  
pp. 53-56
Author(s):  
Ming Li Li ◽  
Qiong Yu ◽  
Ying Xu ◽  
Qing Guo Lu ◽  
Chun Jiang Zhou

Si3N4 based nanocomposites were prepared with nano-sized amorphous SiO2 and Si3N4 powders by pressureless sintering method. The microstructures, phase composition, mechanical and dielectric properties of the nanocomposites were investigated. The scanning electrical microscope (SEM) photographs reveal that the grains are big and elongated. The X-ray diffraction (XRD) analysis shows that the main crystalline phase in the composites is Si2N2O formed during the sintering process. More β-Si3N4 phases were retained in the nanocomposites with the increase amount of the amorphous Si3N4 powders and no phase of SiO2 were observed. The densities and the strength of the nanocomposites decreased with the increase of amorphous SiO2 content. Despite low density, the flexural strengths of the composites reaches 220MPa and the ceramic has excellent dielectric properties with dielectric constant as low as 3.2-4.7 and dielectric loss in the range 2.6-3.9×10-3.


1991 ◽  
Vol 249 ◽  
Author(s):  
C.H. Lin ◽  
T.S. Yan ◽  
T.S. Chin

ABSTRACTBa/Sr titanate powders were obtained by reacting TiO2.xH2O gel in Ba(OH)2 and/or Sr(OH)2 aqueous solution. Different reaction temperatures between 68°C and 98°C and different mole ratios of Ba(OH)2 and Sr(OH)2 were used.X-ray diffraction analysis showed that the titanate powders are cubic, and they are solid solutions of barium and strontium. The lattace spaces of the titanates are affected by the Ba(OH)g/ Sr(OH)g, mole ratio. TEM analysis showed that the titanate powders were spherical, ultrafine, and almost monodispersed. The particle size of the powders is about from 41 to 50 nm depending on the reaction temperature.The titanate powders were compacted and sintered at various temperatures. The best sintering temperature of the powders is about 150°C lower than that of powders made by solid state sintering method.


2011 ◽  
Vol 412 ◽  
pp. 53-56
Author(s):  
Xiao Long Zhou ◽  
Jian Chun Cao ◽  
Jin Hu ◽  
Yuan Yuan Peng ◽  
Jie Yu ◽  
...  

This paper studied affect of porous structure SnO2/In2O3composites about sinter temperature and chemical content of SnO2 by solid-phase reactive sintering method. It studied on the influence of different content of SnO2 and sintering temperature to porous structure SnO2/ In2O3 composites. The microstructure and phase were analyzed by SEM (Scanning Electron Microcopy) and XRD (X-ray diffraction). The results showed SnO2/In2O3 composites had better porous structure as following conditions: the content was 10% SnO2 in SnO2/In2O3 composites and sintering temperature was 1300°C holding 3 hours after 600°C holding 1 hour, and then cooling to room temperature in the furnace.


Sign in / Sign up

Export Citation Format

Share Document