Phage Therapy for Control of Bacterial Diseases

Crustacea ◽  
2020 ◽  
Author(s):  
Palaniappan Ramasamy
Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Andre Mu ◽  
Daniel McDonald ◽  
Alan K. Jarmusch ◽  
Cameron Martino ◽  
Caitriona Brennan ◽  
...  

Abstract Background Infectious bacterial diseases exhibiting increasing resistance to antibiotics are a serious global health issue. Bacteriophage therapy is an anti-microbial alternative to treat patients with serious bacterial infections. However, the impacts to the host microbiome in response to clinical use of phage therapy are not well understood. Results Our paper demonstrates a largely unchanged microbiota profile during 4 weeks of phage therapy when added to systemic antibiotics in a single patient with Staphylococcus aureus device infection. Metabolomic analyses suggest potential indirect cascading ecological impacts to the host (skin) microbiome. We did not detect genomes of the three phages used to treat the patient in metagenomic samples taken from saliva, stool, and skin; however, phages were detected using endpoint-PCR in patient serum. Conclusion Results from our proof-of-principal study supports the use of bacteriophages as a microbiome-sparing approach to treat bacterial infections.


2008 ◽  
Vol 29 (2) ◽  
pp. 96 ◽  
Author(s):  
Nina Chanishvili ◽  
Richard Sharp

The lysis of bacteria by bacteriophage was independently discovered by Frederick Twort and Felix d?Herelle but it was d?Herelle who proposed that bacteriophage might be applied to the control of bacterial diseases. Within the former Soviet Union (FSU), bacteriophage therapy was researched and applied extensively for the treatment of a wide range of bacterial infections. In the West, however, it was not explored with the same enthusiasm and was eventually discarded with the arrival of antibiotics. However, the increase in the incidence of multi-antibiotic-resistant bacteria and the absence of effective means for their control has led to increasing international interest in phage therapy and in the long experience of the Eliava Institute. The Eliava Institute of Bacteriophage, Microbiology and Virology (IBMV), which celebrates its 85th anniversary in 2008, was founded in Tbilisi in 1923 through the joint efforts of d?Herelle and the Georgian microbiologist, George Eliava.


2021 ◽  
Vol 99 (7) ◽  
Author(s):  
Karina Desiree ◽  
Sabrina Mosimann ◽  
Paul Ebner

Abstract Limits on the use and efficacy of various antibiotics coupled with negative consumer perception of the practice have together spurred substantial research into compounds that could reduce the use antibiotics to control bacterial diseases in pigs. Bacteriophages are often among such potential compounds, and various groups have examined the efficacy of bacteriophages or bacteriophage products in limiting transmission or colonization of targeted bacteria. The study presented here provides a systematic review of such studies followed by a meta-analysis of aggregated data produced by each study. The data set was limited to inputs (n = 19; 576 total observations) from studies where: 1) live pigs were inoculated with a known quantity of challenge bacteria; 2) challenged animals were treated with a known quantity of phages; 3) concentrations of the challenge bacteria were measured in different tissues/fluids following phage treatment; and 4) SD (or SE to allow calculation of SD) was reported. Concentrations of challenge bacteria were significantly lower in phage-treated pigs versus challenged but untreated pigs (P < 0.0001; effect size = −1.06 1log10 colony-forming units [CFU]/g). The effect size of phage treatment was significantly greater (P < 0.05) in samples collected 48 to 96 h following phage treatment versus those collected ≤ 24 h following phage treatment. Likewise, effect size of phage treatment was significantly greater in piglets versus market-weight pigs. Across observations, phage treatment effect sizes were greatest (P < 0.01) in fecal samples versus ileal or cecal samples. Taken together, these data indicate that phage treatment can significantly reduce the concentrations of targeted bacteria in pigs; scenarios exist, however, where phage treatment could predictably be more or less effective.


2021 ◽  
Vol 10 (1) ◽  
pp. 46
Author(s):  
Arnold Au ◽  
Helen Lee ◽  
Terry Ye ◽  
Uday Dave ◽  
Azizur Rahman

Through recent decades, the subtherapeutic use of antibiotics within agriculture has led to the widespread development of antimicrobial resistance. This problem not only impacts the productivity and sustainability of current agriculture but also has the potential to transfer antimicrobial resistance to human pathogens via the food supply chain. An increasingly popular alternative to antibiotics is bacteriophages to control bacterial diseases. Their unique bactericidal properties make them an ideal alternative to antibiotics, as many countries begin to restrict the usage of antibiotics in agriculture. This review analyses recent evidence from within the past decade on the efficacy of phage therapy on common foodborne pathogens, namely, Escherica coli, Staphylococcus aureus, Salmonella spp., and Campylobacter jejuni. This paper highlights the benefits and challenges of phage therapy and reveals the potential for phages to control bacterial populations both in food processing and livestock and the possibility for phages to replace subtherapeutic usage of antibiotics in the agriculture sector.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 138 ◽  
Author(s):  
Danitza Romero-Calle ◽  
Raquel Guimarães Benevides ◽  
Aristóteles Góes-Neto ◽  
Craig Billington

Antimicrobial resistance is increasing despite new treatments being employed. With a decrease in the discovery rate of novel antibiotics, this threatens to take humankind back to a “pre-antibiotic era” of clinical care. Bacteriophages (phages) are one of the most promising alternatives to antibiotics for clinical use. Although more than a century of mostly ad-hoc phage therapy has involved substantial clinical experimentation, a lack of both regulatory guidance standards and effective execution of clinical trials has meant that therapy for infectious bacterial diseases has yet to be widely adopted. However, several recent case studies and clinical trials show promise in addressing these concerns. With the antibiotic resistance crisis and urgent search for alternative clinical treatments for bacterial infections, phage therapy may soon fulfill its long-held promise. This review reports on the applications of phage therapy for various infectious diseases, phage pharmacology, immunological responses to phages, legal concerns, and the potential benefits and disadvantages of this novel treatment.


2019 ◽  
Vol 9 (3) ◽  
pp. 190 ◽  
Author(s):  
Waleed S. Soliman ◽  
Raafat M. Shaapan ◽  
Laila A. Mohamed ◽  
Samira S.R. Gayed

2021 ◽  
Vol 11 (1) ◽  
pp. 126-131
Author(s):  
Mahsa Jalili ◽  
Nastaran Ansari ◽  
Somaye Bakhtiari ◽  
Farid Azizi Jalilian

Today, we are facing the spread of antibiotic resistance in various microbial communities. Also, researchers are using new methods to replace conventional treatments to prevent chronic bacterial infections. Hence, the used of phages or bacterial contaminant particles are now used as an effective method in the treatment of many infectious diseases. Several studies have suggested that the use of bacteriophages is effective in treating some bacterial diseases. Therefore, the present study was performed to evaluate phage therapy studies against infections caused by bacterial infections. The use of bacteriophages as new targets in the treatment of bacterial diseases restricts the development of infectious diseases. Bacteriophages can provide a new perspective in the development of new drugs to reduce the rate of bacterial infections. Also, it seems more research should be done in this field and more developed techniques should be used to evaluation of new phages.


2021 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Joana Azeredo ◽  
Jean-Paul Pirnay ◽  
Diana P. Pires ◽  
Mzia Kutateladze ◽  
Krystyna Dabrowska ◽  
...  

Phage therapy refers to the use of bacteriophages (phages - bacterial viruses) as therapeutic agents against infectious bacterial diseases. This therapeutic approach emerged in the beginning of the 20th century but was progressively replaced by the use of antibiotics in most parts of the world after the second world war. More recently however, the alarming rise of multidrug-resistant bacteria and the consequent need for antibiotic alternatives has renewed interest in phages as antimicrobial agents. Several scientific, technological and regulatory advances have supported the credibility of a second revolution in phage therapy. Nevertheless, phage therapy still faces many challenges that include: i) the need to increase phage collections from reference phage banks; ii) the development of efficient phage screening methods for the fast identification of the therapeutic phage(s); iii) the establishment of efficient phage therapy strategies to tackle infectious biofilms; iv) the validation of feasible phage production protocols that assure quality and safety of phage preparations; and (v) the guarantee of stability of phage preparations during manufacturing, storage and transport. Moreover, current maladapted regulatory structures represent a significant hurdle for potential commercialization of phage therapeutics. This article describes the past and current status of phage therapy and presents the most recent advances in this domain.


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 301
Author(s):  
Justyna D. Kowalska ◽  
Joanna Kazimierczak ◽  
Patrycja M. Sowińska ◽  
Ewelina A. Wójcik ◽  
Andrzej K. Siwicki ◽  
...  

Phage therapy, a promising alternative to antimicrobial treatment of bacterial diseases, is getting more and more popular, especially due to the rising awareness of antibiotic resistance and restrictions in antibiotics’ use. During recent years, we observed a growing trend of bacteriophages’ application in aquaculture, which in each year reports high losses due to bacterial diseases. This review provides an update of the status of bacteriophage therapy for the treatment and prevention of infections in the aquatic environment. As it is still mostly in the scientific stage, there are a few constraints that may prevent effective therapy. Therefore, specific characteristics of bacteriophages, that can act in favor or against their successful use in treatment, were described. We underlined aspects that need to be considered: specificity of phages, bacterial resistance, safety, immune response of the host organism, formulation, administration and stability of phage preparations as well as bacteriophages’ influence on the environment. The biggest challenge to overcome is finding the right balance between the desired and problematic characteristics of bacteriophages. Finally, regulatory approval challenges may be encountered by bacteriophage manufacturers. Even though there are still some technical constraints connected with the global use of bacteriophage therapy, it was concluded that it can be successfully applied in aquaculture.


2020 ◽  
Vol 140 ◽  
pp. 25-29
Author(s):  
K Akiyama ◽  
N Hirazawa ◽  
A Hatanaka

Oxytetracycline (OTC) has been commonly used as an effective antibiotic against various fish bacterial diseases, including vibriosis. In this study, the absorption-enhancing effect of citric acid on oral OTC pharmacokinetics and treatment of artificial Vibrio anguillarum infection was evaluated in juvenile yellowtail Seriola quinqueradiata followed by serum OTC concentration analysis. When 25 mg kg-1 body weight (BW) OTC was administered in combination with 1250 mg kg-1 BW citric acid, the serum OTC concentration reached almost the same concentration as that of the group treated with 50 mg kg-1 BW OTC. This coadministration successfully suppressed mortality due to vibriosis similar to the group treated with 50 mg kg-1 BW OTC. Conversely, poor efficacy was observed when only 25 mg kg-1 BW OTC was administered. These results suggest that coadministration of citric acid can be beneficial in reducing the dose of OTC needed for effective treatment, and thus contributes to the goal of reduced use of this antibiotic in aquaculture.


Sign in / Sign up

Export Citation Format

Share Document