scholarly journals Physical and Numerical Modeling of Landslide-Generated Tsunamis: A Review

2020 ◽  
Author(s):  
Alessandro Romano

Landslide-generated tsunamis represent a serious source of hazard for many coastal and lacustrine communities. The understanding of the complex physical phenomena that govern the tsunami generation, propagation and interaction with the coast is essential to reduce and mitigate the tsunamis risk. Experimental, analytical, and numerical models have been extensively used (both as separated tools and in conjunction) to shed light on these complicated natural events. In this work, a non-exhaustive update of the state of the art related to the physical and numerical modeling techniques of landslide-generated tsunamis, with a special focus on those studies published in the last ten years, is provided. As far as numerical models are concerned, a special attention is paid to the most recently developed Computational Fluid Dynamics (CFD) techniques, whose development and application have experienced a boost up the last decade.

Author(s):  
Hasham H. Chougule ◽  
Alexander Mirzamoghadam

The objective of this study is to develop a Computational Fluid Dynamics (CFD) based methodology for analyzing and predicting leakage of worn or rub-intended labyrinth seals during operation. The simulations include intended tooth axial offset and numerical modeling of the flow field. The purpose is to predict total leakage through the seal when an axial tooth offset is provided after the intended/unintended rub. Results indicate that as expected, the leakage for the in-line worn land case (i.e. tooth under rub) is higher compared to unworn. Furthermore, the intended rotor/teeth forward axial offset/shift with respect to the rubbed land reduces the seal leakage. The overall leakage of a rubbed seal with axial tooth offset is observed to be considerably reduced, and it can become even less than a small clearance seal designed not to rub. The reduced leakage during steady state is due to a targeted smaller running gap because of tooth offset under the intended/worn land groove shape, higher blockages, higher turbulence and flow deflection as compared to worn seal model without axial tooth offset.


Author(s):  
Rajnish K. Calay ◽  
Arne E. Holdo

The Computational Fluid Dynamics (CFD) is now increasingly being used for modeling industrial flows, i.e. flows which are multiphase and turbulent. Numerical modeling of flows where momentum, heat and mass transfer occurs at the interface presents various difficulties due to the wide range of mechanisms and flow scenarios present. This paper attempts to provide a summary of available mathematical models and techniques for two-phase flows. Some comments are also made on the models available in the commercially available codes.


2016 ◽  
Vol 842 ◽  
pp. 186-190 ◽  
Author(s):  
Anh Tuan Phan

Hovercraft operates on multi-terrains such as on water surface, on roads, on mud, on non-flat surfaces... it is used popular on the world. With the ability of operating on multi-terrains at high speed, hovercraft is used for many purposes, such as on surveying and rescues missions on areas that are not reachable by normal vehicles, on military missions and traveling... Currently, methods for estimating hovercraft resistance are not accurate enough due to many experiential formulae and coefficients involved during calculating process. This paper presents a method for calculating hovercraft resistance using computational fluid dynamics (CFD) tools. This research method is used popular and modern research method on the world. The method was applied for calculating resistance of a 7 meters length hovercraft model. The modelling results give us suggestions in selecting engine power and operating speeds for minimizing fuel consumption.


Author(s):  
A. M. Sipatov ◽  
◽  
A. V. Khokhlov ◽  
T. V. Abramchuk ◽  
R. A. Zagitov ◽  
...  

The study of processes occurring in gas turbine combustor is an important part of engine design for achieving the required technical, operational, and environmental characteristics of the engine. During engine design process, both experimental and computational methods are used. The progress in numerical methods of modeling fourdimensional (space and time) physical phenomena and increasing of computation capacity allow application of complex computational fluid dynamics (CFD) methods for simulating such technical devices as the gas turbine combustor.


ACTA IMEKO ◽  
2015 ◽  
Vol 4 (4) ◽  
pp. 26
Author(s):  
Jose Eli Eduardo Gonzalez-Duran ◽  
Alejandro Estrada-Baltazar ◽  
Leonel Lira-Cortes

<p class="Abstract">The present work focuses on the numerical modeling of two combustion chambers to be used inside an isoperibolic calorimeter to measure the Superior Calorific Value (SCV) from natural gas. This work shows performance of both chambers working under isoperibolic principle, through simulations based on Computational Fluid Dynamics (CFD). The aim of the work is expose the performance of chamber combustion published in the literature versus another one proposed in this work, and show how was improved the performance of the chamber which proposed in this work by changing the geometry. And it is checked by analyzing temperature of burned gases at exit of combustion chamber.</p>


Author(s):  
Kevin Chow ◽  
Arne E. Holdo̸ ◽  
Robert J. Croft

Current gas-freeing processes on board Very Large Crude Carriers (VLCCs, ships ranging from 160,000 to 320,000 dwt) typically take 2–8 hours depending on the state of the tank. Legislation and practices covering the operations do not account or advise for the varying configurations of the tank leading to potentially inefficient de-gassing of the tank. Through the use of computational fluid dynamics (CFD), it has become possible to examine and analyse the important physical phenomena that governs the de-gassing processes inside the tank. The work presented utilises CFD to visualise the flow interactions of the injected air and the fluid inside the tank in combination with the tank structure. Using these modern techniques, existing gas-freeing methods can be examined with a view to highlighting poor mixing areas. A number if various tank configurations are examined, with respect to size, geometry, vent and fan arrangements. The results are analysed and presented with recommendations.


Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 91
Author(s):  
Nardos Hailu ◽  
Michiel Postema ◽  
Ondrej Krejcar ◽  
Dawit Assefa

The application of atomization technology is common in fields such as agriculture, cosmetics, environmental sciences, and medicine. Aerosolized drugs are administered using nebulizers to treat both pulmonary and nonpulmonary diseases. The characterization and measurement of nebulizers are of great significance in analyzing the performance and accuracy of the nebulizing system and the advancement of the technology. Nevertheless, the characterization of aerosols has been a long-standing challenge in scientific disciplines ranging from atmospheric physics to health sciences. The study of factors that influence nebulization has not been undertaken systematically using experimental techniques. Numerical modeling (NM) and computational fluid dynamics (CFD) can address such issues. This article provides a concise overview of the literature on the application of computational fluid dynamics to medical nebulizers and aerosol measurements.


Author(s):  
Rajnish K. Calay ◽  
Simon D. Harris

The Computational Fluid Dynamics (CFD) has been used in the Aerospace Industry as a major tool in designing and manufacturing aircraft, however, for the ventilation flows its use is yet to be established. Modern commercial aeroplanes operate in a physically hostile environment. These airplanes contain a complex Environment control and thermal comfort. Therefore there are several numerical modeling issues regarding simulating flows dominated by thermal and convective currents. The ventilation airflow behaviour of the interior of a Boeing 737 is investigated in this paper using CFD.


2021 ◽  
Vol 7 ◽  
Author(s):  
Marco Nicola Mastrone ◽  
Franco Concli

Energy efficiency is among the predominant aspects in mechanical design. Geared transmissions are widespread in several industrial applications and efficiency's improvements translate into various benefits, e.g., reduction of pollutants' emissions, better system's reliability due to lower operating temperatures, and higher power density. The possibility to compare different solutions in the preliminary stages of the design phase plays a determinant role to the achievements of these targets. In particular, Computational Fluid Dynamics (CFD) can be adopted to analyze the problem of interest overcoming the limitations of the analytical equations. On the other side, the application of numerical models to gears, in which the topology of the domain changes during operation, represents a challenging task and tailored mesh handling algorithms must be implemented. In the current paper, the power losses of a spiral bevel gear were examined numerically with an opensource tool. The predictions of the numerical models were compared with experimental data. The approach adopted shows a good computational effort making it useful for parametrical studies and, therefore, suggests being an effective tool for the analysis of the gearboxes' efficiency and lubrication.


2021 ◽  
Vol 20 (6) ◽  
pp. 1011-1023
Author(s):  
Ravi Divahar ◽  
Sreekumar Prabha Sangeetha ◽  
Pon Subbiah Aravind Raj ◽  
Thiyagarajan Mohanakavitha ◽  
Thirumoorthy Meenambal

Sign in / Sign up

Export Citation Format

Share Document