scholarly journals Nebulization Criteria and Quantification

Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 91
Author(s):  
Nardos Hailu ◽  
Michiel Postema ◽  
Ondrej Krejcar ◽  
Dawit Assefa

The application of atomization technology is common in fields such as agriculture, cosmetics, environmental sciences, and medicine. Aerosolized drugs are administered using nebulizers to treat both pulmonary and nonpulmonary diseases. The characterization and measurement of nebulizers are of great significance in analyzing the performance and accuracy of the nebulizing system and the advancement of the technology. Nevertheless, the characterization of aerosols has been a long-standing challenge in scientific disciplines ranging from atmospheric physics to health sciences. The study of factors that influence nebulization has not been undertaken systematically using experimental techniques. Numerical modeling (NM) and computational fluid dynamics (CFD) can address such issues. This article provides a concise overview of the literature on the application of computational fluid dynamics to medical nebulizers and aerosol measurements.

Author(s):  
Hasham H. Chougule ◽  
Alexander Mirzamoghadam

The objective of this study is to develop a Computational Fluid Dynamics (CFD) based methodology for analyzing and predicting leakage of worn or rub-intended labyrinth seals during operation. The simulations include intended tooth axial offset and numerical modeling of the flow field. The purpose is to predict total leakage through the seal when an axial tooth offset is provided after the intended/unintended rub. Results indicate that as expected, the leakage for the in-line worn land case (i.e. tooth under rub) is higher compared to unworn. Furthermore, the intended rotor/teeth forward axial offset/shift with respect to the rubbed land reduces the seal leakage. The overall leakage of a rubbed seal with axial tooth offset is observed to be considerably reduced, and it can become even less than a small clearance seal designed not to rub. The reduced leakage during steady state is due to a targeted smaller running gap because of tooth offset under the intended/worn land groove shape, higher blockages, higher turbulence and flow deflection as compared to worn seal model without axial tooth offset.


Author(s):  
Rajnish K. Calay ◽  
Arne E. Holdo

The Computational Fluid Dynamics (CFD) is now increasingly being used for modeling industrial flows, i.e. flows which are multiphase and turbulent. Numerical modeling of flows where momentum, heat and mass transfer occurs at the interface presents various difficulties due to the wide range of mechanisms and flow scenarios present. This paper attempts to provide a summary of available mathematical models and techniques for two-phase flows. Some comments are also made on the models available in the commercially available codes.


2016 ◽  
Vol 842 ◽  
pp. 186-190 ◽  
Author(s):  
Anh Tuan Phan

Hovercraft operates on multi-terrains such as on water surface, on roads, on mud, on non-flat surfaces... it is used popular on the world. With the ability of operating on multi-terrains at high speed, hovercraft is used for many purposes, such as on surveying and rescues missions on areas that are not reachable by normal vehicles, on military missions and traveling... Currently, methods for estimating hovercraft resistance are not accurate enough due to many experiential formulae and coefficients involved during calculating process. This paper presents a method for calculating hovercraft resistance using computational fluid dynamics (CFD) tools. This research method is used popular and modern research method on the world. The method was applied for calculating resistance of a 7 meters length hovercraft model. The modelling results give us suggestions in selecting engine power and operating speeds for minimizing fuel consumption.


Author(s):  
Khunnawat Ountaksinkul ◽  
Sirada Sripinun ◽  
Panut Bumphenkiattikul ◽  
Surapon Bubphacharoen ◽  
Arthit Vongachariya ◽  
...  

This work studies the flow characteristics in the Berty reactor, a gradientless reactor for kinetic studies, using three-dimensional (3D) computational fluid dynamics (CFD), and the non-ideal continuous stirred tank reactors...


ACTA IMEKO ◽  
2015 ◽  
Vol 4 (4) ◽  
pp. 26
Author(s):  
Jose Eli Eduardo Gonzalez-Duran ◽  
Alejandro Estrada-Baltazar ◽  
Leonel Lira-Cortes

<p class="Abstract">The present work focuses on the numerical modeling of two combustion chambers to be used inside an isoperibolic calorimeter to measure the Superior Calorific Value (SCV) from natural gas. This work shows performance of both chambers working under isoperibolic principle, through simulations based on Computational Fluid Dynamics (CFD). The aim of the work is expose the performance of chamber combustion published in the literature versus another one proposed in this work, and show how was improved the performance of the chamber which proposed in this work by changing the geometry. And it is checked by analyzing temperature of burned gases at exit of combustion chamber.</p>


Author(s):  
John F. LaDisa ◽  
C. Alberto Figueroa ◽  
Irene E. Vignon-Clementel ◽  
Frandics P. Chan ◽  
Jeffrey A. Feinstein ◽  
...  

Complications associated with abnormalities of the ascending and thoracic aorta are directly influenced by mechanical forces. To understand hemodynamic alterations associated with diseases in this region, however, we must first characterize related indices during normal conditions. Computational fluid dynamics (CFD) models of the ascending and thoracic aorta to date have only provided descriptions of the velocity field using idealized representations of the vasculature, a single patient data set, and outlet boundary conditions that do not replicate physiologic blood flow and pressure. Importantly, the complexity of aortic flow patterns, limited availability of methods for implementing appropriate boundary conditions, and ability to replicate vascular anatomy all contribute to the difficulty of the problem and, likely, the scarcity of more detailed studies.


This study showed the analysis of heat transfer by computational fluid dynamics (CFD) from a heated target surface by the use of jet of single swirl and impingement by air at various Reynolds numbers. The half-length downstream with insertion of twisted tape is applied in a nozzle body to get the swirl. The distance between twist ratio and nozzle to plate of twisted tape is found to be same as y = 2.93 and 21mm (H/D = 1). The characteristics of transfer of heat on heated surface are determined with varied Reynolds numbers like 12000, 17000, 22000 and 27000.


2020 ◽  
Author(s):  
Alessandro Romano

Landslide-generated tsunamis represent a serious source of hazard for many coastal and lacustrine communities. The understanding of the complex physical phenomena that govern the tsunami generation, propagation and interaction with the coast is essential to reduce and mitigate the tsunamis risk. Experimental, analytical, and numerical models have been extensively used (both as separated tools and in conjunction) to shed light on these complicated natural events. In this work, a non-exhaustive update of the state of the art related to the physical and numerical modeling techniques of landslide-generated tsunamis, with a special focus on those studies published in the last ten years, is provided. As far as numerical models are concerned, a special attention is paid to the most recently developed Computational Fluid Dynamics (CFD) techniques, whose development and application have experienced a boost up the last decade.


2019 ◽  
Vol 29 (1) ◽  
pp. 215-223 ◽  
Author(s):  
Armando I. Vázquez ◽  
Francisco J. Almazán ◽  
Martín Cruz-Diaz ◽  
José A. Delgadillo ◽  
María I. Lázaro ◽  
...  

Author(s):  
Rajnish K. Calay ◽  
Simon D. Harris

The Computational Fluid Dynamics (CFD) has been used in the Aerospace Industry as a major tool in designing and manufacturing aircraft, however, for the ventilation flows its use is yet to be established. Modern commercial aeroplanes operate in a physically hostile environment. These airplanes contain a complex Environment control and thermal comfort. Therefore there are several numerical modeling issues regarding simulating flows dominated by thermal and convective currents. The ventilation airflow behaviour of the interior of a Boeing 737 is investigated in this paper using CFD.


Sign in / Sign up

Export Citation Format

Share Document