scholarly journals Health Effect of Biomass Fuel Smoke

Author(s):  
Olayemi Fehintola Awopeju

Almost half of the world population rely on solid (biomass fuel and coal) for cooking, heating and lightning purpose. The resultant exposure to fine particulate matter from household air pollution is the seventh-largest risk factor for global burden of disease causing between 2.6 and 3.8 million premature deaths per year. The health effect ranges from cardiovascular, respiratory, neurocognitive and reproductive health effect. The most important are cardiovascular and respiratory health effects; others are the risk of burns and cataract in the eyes. Biomass fuel is any living or recently living plant and animal-based material that is burned by humans as fuels, for example, wood, dried animal dung, charcoal, grass and other agricultural residues. Biomass fuels are at the low end of the energy ladder in terms of combustion efficiency and cleanliness. Incomplete combustion of biomass contributes majorly to household air pollution and ambient air pollution. A large number of health-damaging air pollutants are produced during the incomplete combustion of biomass. These include respirable particulate matter, carbon monoxide, nitrogen oxides, formaldehyde, benzene, 1, 3 butadiene, polycyclic aromatic hydrocarbons (PAHs), and many other toxic organic compounds. In this article, health effects of biomass fuel use will be described in details highlighting the most affected systems and organs of the body.

Author(s):  
Ernesto Sánchez-Triana ◽  
Bjorn Larsen ◽  
Santiago Enriquez ◽  
Andreia Costa Santos

Air pollution of fine particulates (PM2.5) is a leading cause of mortality worldwide. It is estimated that ambient PM2.5 air pollution results in between 4.1 million and 8.9 million premature deaths annually. According to the World Bank, the health effects of ambient PM2.5 air pollution had a cost of $6.4 trillion in purchasing power parity (PPP) adjusted dollars in 2019, equivalent to 4.8% of global gross domestic product (PPP adjusted) that year. Estimating the health effects and cost of ambient PM2.5 air pollution involves three steps: (1) estimating population exposure to pollution; (2) estimating the health effects of such exposure; and (3) assigning a monetary value to the illnesses and premature deaths caused by ambient air pollution. Estimating population exposure to ambient PM2,5 has gone from predominantly using ground level monitoring data mainly in larger cities to estimates of nationwide population weighted exposures based on satellite imagery and chemical transport models along with ground level monitoring data. The Global Burden of Disease 2010 (GBD 2010) provided for the first time national, regional and global estimates of exposures to ambient PM2.5. The GBD exposure estimates have also evolved substantially from 2010 to 2019, especially national estimates in South Asia, the Middle East and North Africa, Sub-Saharan Africa and Latin America and the Caribbean. Estimation of health effects of ambient PM2.5 has also undergone substantial developments during the last two decades. These developments involve: i) going from largely estimating health effects associated with variations in daily exposures to estimating health effects of annual exposure; ii) going from estimating all-cause mortality or mortality from broad disease categories (i.e., cardiopulmonary diseases) to estimating mortality from specific diseases; and iii) being able to estimate health effects over a wide range of exposure that reflect ambient and household air pollution exposure levels in low- and middle-income countries. As to monetary valuation of health effects of ambient air pollution, estimates in most low- and middle-income countries still rely on benefit transfer of values of statistical life (VSL) from high-income countries.


Author(s):  
Megan Benka-Coker ◽  
Maggie Clark ◽  
Sarah Rajkumar ◽  
Bonnie Young ◽  
Annette Bachand ◽  
...  

Household air pollution is estimated to be responsible for nearly three million premature deaths annually. Measuring fractional exhaled nitric oxide (FeNO) may improve the limited understanding of the association of household air pollution and airway inflammation. We evaluated the cross-sectional association of FeNO with exposure to household air pollution (24-h average kitchen and personal fine particulate matter and black carbon; stove type) among 139 women in rural Honduras using traditional stoves or cleaner-burning Justa stoves. We additionally evaluated interaction by age. Results were generally consistent with a null association; we did not observe a consistent pattern for interaction by age. Evidence from ambient and household air pollution regarding FeNO is inconsistent, and may be attributable to differing study populations, exposures, and FeNO measurement procedures (e.g., the flow rate used to measure FeNO).


2019 ◽  
Vol 49 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Otavio T Ranzani ◽  
Carles Milà ◽  
Margaux Sanchez ◽  
Santhi Bhogadi ◽  
Bharati Kulkarni ◽  
...  

Abstract Background Evidence linking ambient air pollution with atherosclerosis is lacking from low- and middle-income countries. Additionally, evidence regarding the association between household air pollution and atherosclerosis is limited. We evaluated the association between ambient fine particulate matter [particulate matter with an aerodynamic diameter of ≤2.5 µm (PM2.5)] and biomass fuel use on carotid intima-media thickness (CIMT), a surrogate of atherosclerosis, in India. Methods We analysed the third follow-up of the Andhra Pradesh Children and Parent Study cohort (2010–2012), which recruited participants from 28 peri-urban villages. Our primary outcome was mean CIMT, measured using a standardized protocol. We estimated annual average PM2.5 outdoors at residence using land-use regression. Biomass cooking fuel was self-reported. We fitted a within-between linear-mixed model adjusting for potential confounders. Results Among 3278 participants (48% women, mean age 38 years), mean PM2.5 was 32.7 [range 24.4–38.2] µg/m3, and 60% used biomass. After confounder adjustment, we observed positive associations between within-village variation in PM2.5 and CIMT in all participants [1.79%, 95% confidence interval (CI), −0.31 to 3.90 per 1  µg/m3 of PM2.5] and in men (2.98%, 95% CI, 0.23–5.72, per 1  µg/m3 of PM2.5). Use of biomass cooking fuel was associated with CIMT in all participants (1.60%, 95% CI, −0.46 to 3.65), especially in women with an unvented stove (6.14%, 95% CI, 1.40–10.89). The point-estimate for the PM2.5 association was larger in sub-groups with higher cardiometabolic risk profile. Conclusions Ambient and household air pollution were positively associated with CIMT in a peri-urban population of India, although with limited precision for some estimates. We observed differences in the association between ambient and household air pollution and CIMT by gender.


Author(s):  
Debbi Stanistreet ◽  
Eunice Phillip ◽  
Nitya Kumar ◽  
Rachel Anderson de Cuevas ◽  
Megan Davis ◽  
...  

Globally, household and ambient air pollution (HAAP) leads to approximately seven million premature deaths per year. One of the main sources of household air pollution (HAP) is the traditional stove. So-called improved cookstoves (ICS) do not reduce emissions to levels that benefit health, but the poorest communities are unlikely to have access to cleaner cooking in the medium term. Therefore, ICS are being promoted as an intermediate step. This paper summarises the current evidence on the ICS available to the global poorest, utilising data from the Clean Cookstoves Catalog and systematic review evidence from the field. The cheapest stoves offer little reduction in HAP. Only one ICS, available at US$5 or less, (the canarumwe) minimally reduced pollutants based on ISO testing standards and no studies included in the systematic reviews reported tested this stove in the field. We recommend field testing all ICS as standard, and clear information on stove characteristics, sustainability, safety, emissions efficiency, in-field performance, affordability, availability in different settings, and the ability of the stove to meet community cooking needs. In addition, ICS should be promoted alongside a suite of measures, including improved ventilation and facilities to dry wood, to further reduce the pollutant levels.


Author(s):  
Lu Yang ◽  
Hao Zhang ◽  
Xuan Zhang ◽  
Wanli Xing ◽  
Yan Wang ◽  
...  

Particulate matter (PM) is a major factor contributing to air quality deterioration that enters the atmosphere as a consequence of various natural and anthropogenic activities. In PM, polycyclic aromatic hydrocarbons (PAHs) represent a class of organic chemicals with at least two aromatic rings that are mainly directly emitted via the incomplete combustion of various organic materials. Numerous toxicological and epidemiological studies have proven adverse links between exposure to particulate matter-bound (PM-bound) PAHs and human health due to their carcinogenicity and mutagenicity. Among human exposure routes, inhalation is the main pathway regarding PM-bound PAHs in the atmosphere. Moreover, the concentrations of PM-bound PAHs differ among people, microenvironments and areas. Hence, understanding the behaviour of PM-bound PAHs in the atmosphere is crucial. However, because current techniques hardly monitor PAHs in real-time, timely feedback on PAHs including the characteristics of their concentration and composition, is not obtained via real-time analysis methods. Therefore, in this review, we summarize personal exposure, and indoor and outdoor PM-bound PAH concentrations for different participants, spaces, and cities worldwide in recent years. The main aims are to clarify the characteristics of PM-bound PAHs under different exposure conditions, in addition to the health effects and assessment methods of PAHs.


2014 ◽  
Vol 567 ◽  
pp. 3-7 ◽  
Author(s):  
Nurul Izma Mohammed ◽  
Nurfadhilah Othman ◽  
Khairul Bariyah Baharuddin

Complaints on poor air quality in an enclosed car park have been raised up among the public, which might cause serious health effects to the drivers, passengers, and labours who are working at the premises. Improper design of mechanical ventilation systems in a car park would result in a poor indoor environment. The exhaust emission of motor vehicle contains a variety of potentially harmful substances encompassing carbon monoxide, nitrogen oxides, sulphur dioxide, hydrocarbons, and fine particulates. In Kuala Lumpur, there is a great demand but a short supply of lands and building spaces. Thus, a large multi-storey underground car parks is a common solution for both, the government and developers. Although the health effects of the motor vehicle emissions and ambient air pollution are already known, but due to the nature of enclosed multi-storey car parks, these health risks are predicted to be intensified. Thus, it is crucial to investigate and evaluate the status of the air pollution in the enclosed car parks with emphasis on sulphur dioxide (SO2) and nitrogen dioxides (NO2). Samples were collected in one of the famous shopping malls in Kuala Lumpur using a GrayWolf Advanced Sense Direct Sense; Toxic Gas Test Meters from 8 am until 5 pm on weekdays and weekends. The results demonstrate that the concentrations of SO2 and NO2 on weekends is higher than weekdays. Besides, the concentrations for both weekdays and weekends have exceeded the standard limit set by the Malaysian Ambient Air Quality Guideline (MAAQG).


2020 ◽  
Author(s):  
xiaomei wu ◽  
Bo Zhu ◽  
Jin Zhou ◽  
Yifei Bi ◽  
Shuang Xu ◽  
...  

Abstract Objective Air pollution is the major contributor of lung cancer mortality, we want to analyze the long-term trends and the differences in lung cancer burden attributable to PM2.5 exposure between ambient air pollution and household air pollution.Methods The indicators (mortality rate, disability-adjusted life years rate, years lived with disability rate, and years of life lost rate) of lung cancer burden were obtained from GBD 2017. The joinpoint regression analysis was used to assess the magnitude and direction of trends from 1990 to 2017, and the age-period-cohort method was used to analyze the temporal trends of the indicators of lung cancer by age, period, and cohort.Results The age-standardized indicators showed an upward trend in ambient PM2.5 exposure (APE) and a downward trend in household PM2.5 exposure (HPE). The overall net drifts per year were above zero for APE and below zero for HPE, and the local drift values in APE and HPE increased by age groups. For the longitudinal age curves, the indicators of lung cancer burden for younger in APE or HPE were in a low level, and significantly increased from 45-49 age group to 90-94 age group. For the period RRs, the indicators of lung cancer burden in APE increased from 1990 to 2017, but decreased in HPE from 1990 to 2017. For the cohort RRs, the indicators of lung cancer burden in APE was on the upward trend before 1965, and fluctuated after from 1970 to 1990. The indicators of lung cancer burden in HPE was on the downward trend.Conclusions For lung cancer attributable to air pollution, China had changed from household air pollution to ambient air pollution. PM2.5 exposure had more harmful in male and older people. Ambient air pollution should be emphasized, China should strengthen implementation of effective public policies and other interventions.


2021 ◽  
Author(s):  
Yuqiang Zhang ◽  
Drew Shindell ◽  
Karl Seltzer ◽  
Lu Shen ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. China has seen dramatic emission changes from 2010, especially after the implementation of Clean Air Action in 2013, with significant air quality and human health benefits observed. Air pollutants, such as PM2.5 and surface ozone, as well as their precursors, have long enough lifetime in the troposphere which can be easily transported downwind. So emission changes in China will not only change the regional air quality domestically, but also affect the air quality in downwind regions. In this study, we use a global chemistry transport model to simulate the influence on both domestic and foreign air quality from the emission change from 2010 to 2017 in China. By applying the health impact functions derived from epidemiology studies, we then quantify the changes in air pollution-related (including both PM2.5 and O3) mortality burdens at regional and global scales. The majority of air pollutants in China reach their peak values around 2012 and 2013. Compared with the year 2010, the population-weighted annual PM2.5 in China increases till 2011 (94.1 μg m−3), and then begins to decrease. In 2017, the population-weighted annual PM2.5 decreases by 17.6 %, compared with the values in 2010 (84.7 μg m−3). The estimated national PM2.5 concentration changes in China are comparable with previous studies using fine-resolution regional models, though our model tends to overestimate PM2.5 from 2013 to 2017 when evaluated with surface observation in China during the same periods. The emission changes in China increased the global PM2.5-related mortality burdens from 2010 to 2013, by 27,700 (95 %CI: 23,900–31, 400) deaths yr−1 in 2011, and 13, 300 (11,400–15,100) deaths yr−1 in 2013, among which at least 93 % occurred in China. The sharp emission decreases after 2013 bring significant benefits for reduced avoided premature mortality in 2017, reaching 108, 800 (92,800–124,800) deaths yr−1 globally, among which 92 % happening in China. Different trend as PM2.5, the annual maximum daily 8-hr ozone in China increased, and also the ozone-related premature deaths, ranging from 3,600 (2,700–4,300) deaths yr−1 in 2011 (75 % of global total increased premature deaths), and 8,500 (6,500–9,900) deaths yr−1 in 2017 (143 % of the global total). Downwind regions, such as South Korea, Japan, and U.S. generally see a decreased O3-related mortality burden after 2013 as a combination of increased export of ozone and decreased export of ozone precursors. In general, we conclude that the sharp emission reductions in China after 2013 bring benefits of improved air quality and reduced premature deaths associated with air pollution at global scale. The benefits are dominated by the PM2.5 decreases since the ozone is shown to actually increase with the emission decrease.


Author(s):  
Francis Olawale Abulude

Particulate matter (PM) is one of the problems faced in environmental science. It has health effects on man and animals in both developed and developing countries. Research and efforts have been on it several years back. Policy statements and efforts have been published. This review paper is an added information on air pollution. In it, efforts were made in discussing these: classification, effects, methodology, case studies and source apportionment. It is hoped that this paper would contribute to existing knowledge on PM.


2014 ◽  
Vol 66 ◽  
pp. 165-173 ◽  
Author(s):  
Yann Sellier ◽  
Julien Galineau ◽  
Agnes Hulin ◽  
Fabrice Caini ◽  
Nathalie Marquis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document